No photo of Arjen Hommersom

Arjen Hommersom

dr.

20152019

Research output per year

If you made any changes in Pure these will be visible here soon.

Research Output

  • 8 Conference article in proceeding
  • 7 Article
  • 1 Editorial
2019

A comparison between discrete and continuous time Bayesian networks in learning from clinical time series data with irregularity

Liu, M., Stella, F., Hommersom, A., Lucas, P. J. F., Boer, L. & Bischoff, E., Apr 2019, In : Artificial Intelligence in Medicine. 95, p. 104-117 14 p.

Research output: Contribution to journalArticleAcademicpeer-review

A Data-Driven Exploration of Hypotheses on Disease Dynamics

Bueno, M. L. P., Hommersom, A., Lucas, P. J. F. & Janzing, J., 30 May 2019, Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 2019, Proceedings. Riaño, D., Wilk, S. & ten Teije, A. (eds.). Cham: Springer International Publishing AG, p. 170-179 10 p. (Lecture Notes in Computer Science (LNCS), Vol. 11526).

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

A probabilistic framework for predicting disease dynamics: A case study of psychotic depression

Bueno, M. L. P., Hommersom, A., Lucas, P. J. F. & Janzing, J., Jul 2019, In : Journal of Biomedical Informatics. 95, 12 p., 103232.

Research output: Contribution to journalArticleAcademicpeer-review

2018

Denial-of-Service Attacks on LoRaWAN

van Es, E., Vranken, H. & Hommersom, A., 2018, Proceedings of the 13th International Conference on Availability, Reliability and Security. New York, NY, USA: acm, 17

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Discovering Software Vulnerabilities Using Data-flow Analysis and Machine Learning

Kronjee, J., Hommersom, A. & Vranken, H., 2018, Proceedings of the 13th International Conference on Availability, Reliability and Security. New York, NY, USA: acm, 10 p. 6

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Explaining the Most Probable Explanation

Butz, R., Hommersom, A. & van Eekelen, M., 2018, Scalable Uncertainty Management: 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings. Ciucci, D., Pasi, G. & Vantaggi, B. (eds.). Cham: Springer International Publishing AG, p. 50-63 14 p. (Lecture Notes in Computer Science, Vol. 11142).

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Making Continuous Time Bayesian Networks More Flexible

Liu, M., Stella, F., Hommersom, A. & Lucas, P. J. F., 1 Nov 2018, Proceedings of the Ninth International Conference on Probabilistic Graphical Models. Kratochvíl, V. & Studený, M. (eds.). Prague, Czech Republic: PMLR, Vol. 72. p. 237-248 12 p. (Proceedings of Machine Learning Research).

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Open Access

Modeling the Dynamics of Multiple Disease Occurrence by Latent States

Bueno, M. L. P., Hommersom, A., Lucas, P. J. F., Lobo, M. & Rodrigues, P. P., 2018, Scalable Uncertainty Management: 12th International Conference, SUM 2018, Milan, Italy, October 3-5, 2018, Proceedings. Ciucci, D., Pasi, G. & Vantaggi, B. (eds.). Cham: Springer International Publishing AG, p. 93-107 15 p. (Lecture Notes in Computer Science; No. 11142).

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Probabilistic logic programming (PLP) 2016

Hommersom, A. & Cussens, J., May 2018, In : International Journal of Approximate Reasoning. 96, p. 56-56 1 p.

Research output: Contribution to journalEditorialAcademic

Representing Hypoexponential Distributions in Continuous Time Bayesian Networks

Liu, M., Stella, F., Hommersom, A. & Lucas, P. J. F., 2018, Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. Medina, J., Ojeda-Aciego, M., Verdegay, J. L., Perfilieva, I., Bouchon-Meunier, B. & Yager, R. R. (eds.). Cham: Springer International Publishing AG, Vol. 855. p. 565-577 13 p. (Communications in Computer and Information Science, Vol. 855).

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

2017

A Prognostic Model of Glioblastoma Multiforme Using Survival Bayesian Networks

Rabinowicz, S., Hommersom, A., Butz, R. & Williams, M., 2017, Artificial Intelligence in Medicine: 16th Conference on Artificial Intelligence in Medicine, AIME 2017, Vienna, Austria, June 21-24, 2017, Proceedings. ten Teije, A., Popow, C., Holmes, J. H. & Sacchi, L. (eds.). Cham: Springer International Publishing AG, p. 81-85 5 p. (Lecture Notes in Computer Science, Vol. 10259).

Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

Asymmetric hidden Markov models

Bueno, M. L. P., Hommersom, A., Lucas, P. J. F. & Linard, A., Sep 2017, In : International Journal of Approximate Reasoning. 88, p. 169-191 23 p.

Research output: Contribution to journalArticleAcademicpeer-review

Exploiting Experts' Knowledge for Structure Learning of Bayesian Networks

Amirkhani, H., Rahmati, M., Lucas, P. J. F. & Hommersom, A., Nov 2017, In : Ieee Transactions on Pattern Analysis and Machine Intelligence. 39, 11, p. 2154-2170 17 p.

Research output: Contribution to journalArticleAcademicpeer-review

Hybrid time Bayesian networks

Liu, M., Hommersom, A., van der Heijden, M. & Lucas, P. J. F., Jan 2017, In : International Journal of Approximate Reasoning. 80, p. 460-474 15 p.

Research output: Contribution to journalArticleAcademicpeer-review

2016

Understanding disease processes by partitioned dynamic Bayesian networks

Bueno, M. L. P., Hommersom, A., Lucas, P. J. F., Lappenschaar, M. & Janzing, J. G. E., Jun 2016, In : Journal of Biomedical Informatics. 61, p. 283-297 15 p.

Research output: Contribution to journalArticleAcademicpeer-review

Open Access
2015

A new probabilistic constraint logic programming language based on a generalised distribution semantics

Michels, S., Hommersom, A., Lucas, P. J. F. & Velikova, M., Nov 2015, In : Artificial Intelligence. 228, p. 1-44 44 p.

Research output: Contribution to journalArticleAcademicpeer-review