Automated essay scoring in applied games: Reducing the teacher bandwidth problem in online training

W. Westera, Mihai Dascalu, Hub Kurvers, Stefan Ruseti, Stefan Trausan-Matu

    Research output: Contribution to journalArticleAcademicpeer-review

    168 Downloads (Pure)

    Abstract

    This paper presents a methodology for applying automated essay scoring in educational settings. The methodology was tested and validated on a dataset of 173 reports (in Dutch language) that students have created in an applied game on environmental policy. Natural Language Processing technologies from the ReaderBench framework were used to generate an extensive set of textual complexity indices for each of the reports. Afterwards, different machine learning algorithms were used to predict the scores. By combining binary classification (pass or fail) and a probabilistic model for precision, a trade-off can be made between validity of automated score prediction (precision) and the reduction of teacher workload required for manual assessment. It was found from the sample that substantial workload reduction can be achieved, while preserving high precision: allowing for a precision of 95% or higher would already reduce the teacher’s workload to 74%; lowering precision to 80% produces a workload reduction of 50%.
    Original languageEnglish
    Pages (from-to)212-224
    Number of pages13
    JournalComputers and Education
    Volume123
    DOIs
    Publication statusPublished - Aug 2018

    Keywords

    • intelligent tutoring systems
    • architectures for educational technology system
    • interactive learning environments
    • simulations
    • distance education and telelearning
    • Natural Language Processing
    • essay scoring
    • games

    Fingerprint

    Dive into the research topics of 'Automated essay scoring in applied games: Reducing the teacher bandwidth problem in online training'. Together they form a unique fingerprint.

    Cite this