Abstract
Norms have been widely proposed to coordinate and regulate multi-agent systems (MAS) behaviour. We consider the problem of synthesising and revising the set of norms in a normative MAS to satisfy a design objective expressed in Alternating Time Temporal Logic (ATL*). ATL* is a well-established language for strategic reasoning, which allows the specification of norms that constrain the strategic behaviour of agents. We focus on dynamic norms, that is, norms corresponding to Mealy machines, that allow us to place different constraints on the agents' behaviour depending on the state of the norm and the state of the underlying MAS. We show that synthesising dynamic norms is (k + 1)-EXPTIME, where k is the alternation depth of quantifiers in the ATL* specification. Note that for typical cases of interest, k is either 1 or 2. We also study the problem of removing existing norms to satisfy a new objective, which we show to be 2EXPTIME-complete.
Original language | English |
---|---|
Title of host publication | Proceedings of the 19th International Conference on Principles of Knowledge Representation and Reasoning |
Pages | 12-21 |
ISBN (Electronic) | 9781956792010 |
DOIs | |
Publication status | Published - 2022 |
Externally published | Yes |