Data-Driven Revision of Conditional Norms in Multi-Agent Systems (Extended Abstract)

Davide Dell'Anna, Natasha Alechina, Fabiano Dalpiaz, Mehdi Dastani, Brian Logan

Research output: Chapter in Book/Report/Conference proceedingConference Article in proceedingAcademicpeer-review


In multi-agent systems, norm enforcement is a mechanism for steering the behavior of individual agents in order to achieve desired system-level objectives. Due to the dynamics of multi-agent systems, however, it is hard to design norms that guarantee the achievement of the objectives in every operating context. Also, these objectives may change over time, thereby making previously defined norms ineffective. In this paper, we investigate the use of system execution data to automatically synthesise and revise conditional prohibitions with deadlines, a type of norms aimed at preventing agents from exhibiting certain patterns of behaviors. We propose DDNR (Data-Driven Norm Revision), a data-driven approach to norm revision that synthesises revised norms with respect to a data set of traces describing the behavior of the agents in the system. We evaluate DDNR using a state-of-the-art, off-the-shelf urban traffic simulator. The results show that DDNR synthesises revised norms that are significantly more accurate than the original norms in distinguishing adequate and inadequate behaviors for the achievement of the system-level objectives.

Original languageEnglish
Title of host publicationProceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023
EditorsEdith Elkind
Place of PublicationDarmstadt
PublisherInternational Joint Conferences on Artificial Intelligence
ISBN (Electronic)9781956792034
ISBN (Print)9781956792034
Publication statusPublished - 2023


Dive into the research topics of 'Data-Driven Revision of Conditional Norms in Multi-Agent Systems (Extended Abstract)'. Together they form a unique fingerprint.

Cite this