Abstract
In this doctoral consortium paper, we introduce the CPR Tutor, an intelligent tutoring system for cardiopulmonary resuscitation (CPR) training based on the analysis of multimodal data. Using a multi-sensor setup, the CPR Tutor tracks the CPR execution of the trainee and generates automatic adaptive feedback to improve the trainee's performance. This research work is part of a PhD project entitled "Multimodal Tutor: adaptive feedback from multimodal experience capturing'', a project which investigates how to use multimodal and multi-sensor data to generate personalised feedback for training psycho-motor skills at the workplace or during medical simulations. In the CPR Tutor, we use Microsoft Kinect and Myo to track trainee's body position and the ResusciAnne QCPR manikin to get correct CPR performance metrics. We then use a validated approach, the Multimodal Pipeline, for the collection, storage, processing, annotation of multimodal data. This paper describes the preliminary results obtained in the first design of the CPR Tutor.
Original language | English |
---|---|
Pages | 1-6 |
Number of pages | 6 |
Publication status | Published - May 2019 |
Event | 17th Conference on Artificial Intelligence in Medicine - Poznan, Poland Duration: 26 Jun 2019 → 29 Jun 2019 https://aime19.aimedicine.info/ |
Conference
Conference | 17th Conference on Artificial Intelligence in Medicine |
---|---|
Abbreviated title | AIME 2019 |
Country/Territory | Poland |
City | Poznan |
Period | 26/06/19 → 29/06/19 |
Internet address |