Learning pulse: a machine learning approach for predicting performance in self-regulated learning using multimodal data

Daniele Di Mitri, Maren Scheffel, Hendrik Drachsler, Dirk Börner, Stefaan Ternier, Marcus Specht

    Research output: Chapter in Book/Report/Conference proceedingConference article in proceedingAcademicpeer-review

    Abstract

    Learning Pulse explores whether using a machine learning approach on multimodal data such as heart rate, step count, weather condition and learning activity can be used to predict learning performance in self-regulated learning settings. An experiment was carried out lasting eight weeks involving PhD students as participants, each of them wearing a FitbitHR wristband and having their application on their computer recorded during their learning and working activities throughout the day. A software infrastructure for collecting multimodal learning experiences was implemented. As part of this infrastructure, a Data Processing Application was developed to pre-process, analyse and generate predictions to provide feedback to the users about their learning performance. Data from di fferent sources were stored using the xAPI standard into a cloud-based Learning Record Store. The participants of the experiment were asked to rate their learning experience through an Activity Rating Tool indicating their perceived level of productivity, stress, challenge and abilities. These self-reported performance indicators were used as markers to train a Linear Mixed E ect Model to generate learner-speci c predictions of the learning performance. We discuss the advantages and the limitations of the used approach, highlighting further development points.
    Original languageEnglish
    Title of host publicationLAK '17
    Subtitle of host publicationProceedings of the Seventh International Learning Analytics & Knowledge Conference
    Place of PublicationNew York
    PublisherAssociation for Computing Machinery (ACM)
    Pages188-197
    Number of pages10
    ISBN (Print)9781450348706
    DOIs
    Publication statusPublished - 13 Mar 2017

    Publication series

    SeriesACM International Conference Proceeding Series

    Keywords

    • Learning Analytics
    • Biosensors
    • Wearable Enhanced Learning
    • Multimodal data
    • Machine Learning

    Fingerprint

    Dive into the research topics of 'Learning pulse: a machine learning approach for predicting performance in self-regulated learning using multimodal data'. Together they form a unique fingerprint.

    Cite this