Pre-admission ambient air pollution and blood soot particles predict hospitalisation outcomes in COVID-19 patients

S Vos, E De Waele, P Goeminne, EM Bijnens, E Bongaerts, DS Martens, R Malina, M Ameloot, K Dams, A De Weerdt, G Dewyspelaere, R Jacobs, G Mistiaen, P Jorens, TS Nawrot*

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review


Background Air pollution exposure is one of the major risk factors for aggravation of respiratory diseases. We investigated whether exposure to air pollution and accumulated black carbon (BC) particles in blood were associated with coronavirus disease 2019 (COVID-19) disease severity, including the risk for intensive care unit (ICU) admission and duration of hospitalisation.
Methods From May 2020 until March 2021, 328 hospitalised COVID-19 patients (29% at intensive care) were recruited from two hospitals in Belgium. Daily exposure levels (from 2016 to 2019) for particulate matter with aerodynamic diameter <2.5 µm and <10 µm (PM2.5 and PM10, respectively), nitrogen dioxide (NO2) and BC were modelled using a high-resolution spatiotemporal model. Blood BC particles (internal exposure to nano-sized particles) were quantified using pulsed laser illumination. Primary clinical parameters and outcomes included duration of hospitalisation and risk of ICU admission.
Results Independent of potential confounders, an interquartile range (IQR) increase in exposure in the week before admission was associated with increased duration of hospitalisation (PM2.5 +4.13 (95% CI 0.74–7.53) days, PM10 +4.04 (95% CI 1.24–6.83) days and NO2 +4.54 (95% CI 1.53–7.54) days); similar effects were observed for long-term NO2 and BC exposure on hospitalisation duration. These effect sizes for an IQR increase in air pollution on hospitalisation duration were equivalent to the effect of a 10-year increase in age on hospitalisation duration. Furthermore, for an IQR higher blood BC load, the OR for ICU admission was 1.33 (95% CI 1.07–1.65).
Conclusions In hospitalised COVID-19 patients, higher pre-admission ambient air pollution and blood BC levels predicted adverse outcomes. Our findings imply that air pollution exposure influences COVID-19 severity and therefore the burden on medical care systems during the COVID-19 pandemic.
Original languageEnglish
Article number2300309
Number of pages13
JournalEuropean Respiratory Journal
Issue number1
Publication statusPublished - 1 Jul 2023


Dive into the research topics of 'Pre-admission ambient air pollution and blood soot particles predict hospitalisation outcomes in COVID-19 patients'. Together they form a unique fingerprint.

Cite this