TY - JOUR
T1 - Spatial and temporal variation of metal concentrations in adult honeybees (Apis mellifera L.)
AU - van der Steen, Jozef JM
AU - de Kraker, Joop
AU - Grotenhuis, wageningen
PY - 2012
Y1 - 2012
N2 - Honeybees (Apis mellifera L.) have great potential for detecting and monitoring environmental pollution, given their wide-ranging foraging behaviour. Previous studies have demonstrated that concentrations of metals in adult honeybees were significantly higher at polluted than at control locations. These studies focused at a limited range of heavy metals and highly contrasting locations, and sampling was rarely repeated over a prolonged period. In our study, the potential of honeybees to detect and monitor metal pollution was further explored by measuring the concentration in adult honeybees of a wide range of trace metals, nine of which were not studied before, at three locations in the Netherlands over a 3-month period. The specific objective of the study was to assess the spatial and temporal variation in concentration in adult honeybees of Al, As, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, V and Zn. In the period of July–September 2006, replicated samples were taken at 2-week intervals from commercial-type beehives. The metal concentration in micrograms per gram honeybee was determined by inductive coupled plasma–atomic emission spectrometry. Significant differences in concentration between sampling dates per location were found for Al, Cd, Co, Cr, Cu, Mn Sr, Ti and V, and significant differences in average concentration between locations were found for Co, Sr and V. The results indicate that honeybees can serve to detect temporal and spatial patterns in environmental metal concentrations, even at relatively low levels of pollution.
AB - Honeybees (Apis mellifera L.) have great potential for detecting and monitoring environmental pollution, given their wide-ranging foraging behaviour. Previous studies have demonstrated that concentrations of metals in adult honeybees were significantly higher at polluted than at control locations. These studies focused at a limited range of heavy metals and highly contrasting locations, and sampling was rarely repeated over a prolonged period. In our study, the potential of honeybees to detect and monitor metal pollution was further explored by measuring the concentration in adult honeybees of a wide range of trace metals, nine of which were not studied before, at three locations in the Netherlands over a 3-month period. The specific objective of the study was to assess the spatial and temporal variation in concentration in adult honeybees of Al, As, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Sb, Se, Sn, Sr, Ti, V and Zn. In the period of July–September 2006, replicated samples were taken at 2-week intervals from commercial-type beehives. The metal concentration in micrograms per gram honeybee was determined by inductive coupled plasma–atomic emission spectrometry. Significant differences in concentration between sampling dates per location were found for Al, Cd, Co, Cr, Cu, Mn Sr, Ti and V, and significant differences in average concentration between locations were found for Co, Sr and V. The results indicate that honeybees can serve to detect temporal and spatial patterns in environmental metal concentrations, even at relatively low levels of pollution.
U2 - 10.1007/s10661-011-2248-7
DO - 10.1007/s10661-011-2248-7
M3 - Article
SN - 0167-6369
VL - 184
SP - 4119
EP - 4126
JO - Environmental Monitoring and Assessment
JF - Environmental Monitoring and Assessment
IS - 7
ER -