How groups of nursing home residents respond to “the CRDL”

Citation for published version (APA):

DOI: 10.1108/JET-05-2018-0025

Document status and date:
Published: 17/12/2018

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at: pure-support@ou.nl
providing details and we will investigate your claim.
How groups of nursing home residents respond to “the CRDL”: a pilot study

Tom Luyten, Susy Braun, Susan van Hooren and Luc de Witte

Abstract
Purpose – The purpose of this paper is to describe whether and how groups of nursing home residents respond to the interactive device “the CRDL”. The CRDL can translate touches between people into sounds. It recognises the type of touch and adjusts the produced sound accordingly.
Design/methodology/approach – This was an observational explorative study. Responses were coded and analysed using an existing theoretical framework.
Findings – The CRDL creates an atmosphere of playfulness and curiosity. It lowers the threshold to touch, provides an incentive to touch and encourages experimentation with different types of touches on arms and hands. The sounds the CRDL produces sometimes trigger memories and provide themes to start and support conversation. Involving a (large) group of nursing home residents to interact with the CRDL is challenging.
Research limitations/implications – In order to more fully understand the potential of the CRDL, its use should be studied in different group and individual sessions and the effects of tailored content, adjusted to individual preferences and/or stages of cognition should be explored. Finally, the effects of using the CRDL on the general wellbeing of nursing home residents should be studied.
Practical implications – The CRDL can help caregivers to use touch to make contact with (groups of their) residents. A session should be guided by an experienced caregiver. Some familiarisation and practice with the CRDL are recommended and a quiet environment is advised.
Originality/value – This paper demonstrates the potential of interactive objects, such as the CRDL, in the nursing home.

Keywords Experience, Interactive, Nursing home, Elderly care, Responses, Touch

Paper type Research paper

1. Introduction
A simple touch communicates a wealth of information. A mother caressing her newborn, the fingertips of a couple slightly touching or a pat on the back while shaking someone’s hand. Touch is a language we use instinctively. It is our most developed sense when we are born, and it is critical during the development of an infant (Field, 2014). Humans are unknowingly skilled in deciphering the information that is contained within a single touch. Touch influences our behaviour and registers in our brain, whether or not the touch itself can be remembered (Gallace and Spence, 2010; Lindgren et al., 2012). People are even able to explicitly identify emotions from the experience of being touched, without seeing the touch itself (Hertenstein et al., 2006).

In nursing homes, touch is part of daily life and two types can be distinguished: physical and therapeutic touch. Therapeutic touch has the explicit intention to heal (Krieger, 1979). Physical touch is split into instrumental and expressive touch (Watson, 1975). An instrumental touch is deliberate and required for the task at hand. Helping a patient out of his/her wheelchair, for instance, is instrumental, whereas an expressive touch is often spontaneous and affective, such as an encouraging pat on the shoulder.

The effects of therapeutic touch on nursing home residents have been studied. Recent systematic reviews conclude there is insufficient evidence in favour of massage and touch...
interventions for long-term effects, but therapeutic touch interventions have proven to reduce restlessness and stress in nursing home residents during the intervention (Livingston et al., 2014; Hansen et al., 2006; Cai and Zhang, 2015; McFeeters et al., 2016; Wu et al., 2017). Touch is reciprocal: Nicholls et al. (2013) reported that seeing the person with dementia relaxed and content because of an everyday touch produced a similar impact on those close by.

When touch is put into practice, there are some considerations to take into account. The emotional bond between humans is key to where and how we want to be touched by someone (Suvilehto et al., 2015). Nonetheless, not everyone perceives a touch in the same way. The person being touched might experience it as a violation of personal boundaries. This depends on a multitude of factors including the relationship of both people and the context, such as the workplace culture. In a formal, more distant corporate culture, it might be considered inappropriate or be frowned upon for two people to touch while in some companies greeting each other with a hug is part of the daily ritual.

In the nursing home environment, some people might benefit from an increase in expressive touches and might even experience them as therapeutic. However, a safe context for both parties should be created for them to feel comfortable.

The CRDL (Plate 1), an interactive device that translates touch between two or multiple people into sound, could create a situation or context in which touch is considered part of the experience and feels safe and playful for all parties to participate. The CRDL can be used by a minimum of two and no maximum number of people simultaneously. It recognises the type of touch (e.g. tickling, holding, kneading, tapping or grabbing) and adjusts the produced sound accordingly. For instance, a gentle touch could trigger a bird singing while a firm grasp results in the sound of a rainstorm. Through the CRDL, people can “play each other” like a musical instrument. It makes touching the other person more inviting and playful. The CRDL has no display. It produces only audible content.

The CRDL (pronounced: “the cradle”) got its name due to its shape, size and weight, which refer to a baby or a crib. Physically, the CRDL has an abstract, rounded form. On opposite sides of the device, there is a grey felt inlay shaped like a larger-than-life fingerprint. Two participants have to place one hand on such a felt “pad” and simultaneously touch the other person’s skin (e.g. hand, arm or shoulder). If more people are interacting, they all have to touch each other. This way they

Plate 1 The interactive object CRDL
close an electric circuit and the speaker, located in the centre of the CRDL, produces a sound, influenced by the type of touch and the selected soundscape (e.g. nature, town, instrumental, animals and house–garden–kitchen sounds). To select a soundscape, the controls hidden in a side panel of the CRDL should be used.

Mergent, an architecture and product design firm located in the Netherlands, designed the CRDL to empower people who have trouble with communication and social interaction. People who live with dementia, autism or other cognitive limitations are invited to use the CRDL to communicate with their friends and family through touch, sound and play. The CRDL has been informally tested by Mergent. Sessions included people who live with (severe) dementia and a member of their family, caregivers or activity supervisors interacting one-on-one through the CRDL. Research on the CRDL in a group setting is lacking. Therefore, it is interesting to study how groups of nursing home residents with dementia respond to the CRDL.

2. Methods

This study was designed and carried out as an observational explorative study. It took place at a nursing home facility in the south of the Netherlands.

2.1 Study population

During the time of the study, 12 residents were living in a closed facility for people living with psychogeriatric disorders. All 12 experienced cognitive disabilities to such an extent that they were unable to live independently. The actual selection of participants was made by professional caregivers based on availability of the residents and their willingness to participate at that given moment. All residents were invited to try out the new device in the activity room. During the sessions, other residents and staff could freely walk in and out and participate.

2.2 Ethical considerations

The local ethics committee (METC Atrium, Orbis, Zuyd; 14-N-100) approved the research protocol. Because of the spontaneous selection and open character of the study design, no actual consent form was completed by the participants; thus, the study was given an exempt status. The ethical committee approved the way participants were selected and included. All residents, their legal representatives and the professional caregivers were informed about the study by means of an information letter two weeks prior to the study and could decline to participate by contacting the staff working on the reception desk or by telling a member of staff. If participants wanted to exit during the study, they could do so by signalling the caregiver in charge.

2.3 Design

In total, 9 of the 12 residents living in the closed ward participated in the study. Six participants attended more than one session. Two professional caregivers, one informal caregiver and two activity supervisors, all female, guided the sessions (Table I).

<table>
<thead>
<tr>
<th>Date</th>
<th>Duration</th>
<th>Responses recorded</th>
<th>Participants</th>
<th>Gender</th>
<th>Supervisors</th>
<th>Role/profession</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 August 2017</td>
<td>44 min</td>
<td>178</td>
<td>M1, V1, V2, V3</td>
<td>F</td>
<td>Activity supervisor 1</td>
<td></td>
</tr>
<tr>
<td>17 August 2017</td>
<td>19 min</td>
<td>184</td>
<td>M2, M3, V4, V5</td>
<td>F</td>
<td>Informal caregiver</td>
<td></td>
</tr>
<tr>
<td>18 August 2017</td>
<td>16 min</td>
<td>138</td>
<td>M1, M4, V1</td>
<td>F</td>
<td>Caregiver 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>F Caregiver 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 September 2017</td>
<td>33 min</td>
<td>231</td>
<td>M3, M2, V3, V4</td>
<td>F</td>
<td>Activity supervisor 2</td>
<td></td>
</tr>
<tr>
<td>13 September 2017</td>
<td>31 min</td>
<td>314</td>
<td>V1, V3, V4</td>
<td>F</td>
<td>Activity supervisor 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>143 min</td>
<td>1,045</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In total, five sessions were held with a minimum duration of 16 mins and a maximum duration of 44 mins. This amounted to a total of two hours and 23 min of recorded video and 1,045 responses. The frequency of responses per session varied from 243 to 608 per hour. In total, 59 per cent of responses were initiated by a caregiver or activity supervisor \((n = 619)\) and 41 per cent by a resident \((n = 426)\).

In each session, 3 or 4 of the 12 residents accepted the invitation of a caregiver or activity supervisor to participate. The CRDL was placed at the centre of a table and residents were initially seated within arm’s reach of it and each other. The researchers were seated out of view in another room and were able to follow the session through a remote screen. A single video camera captured the participants’ responses, which allowed repeated display (Figure 1). All visible and audible interactions recorded on video were transcribed and coded independently by two researchers (TL, GJ). The researchers consulted two other researchers (SB, SvH) in case of disagreement, to reach consensus.

The caregivers and activity supervisors received no instructions or protocol on how to guide the session. Some explanation about the functioning of the CRDL was provided by the researchers and a comprehensive manual, in the form of an A5 leaflet, was at the disposal of the caregiver or activity supervisor to refer to during the session. The CRDL was loaded with five soundscapes: sounds of nature, a town, animals, instruments and house–garden–kitchen sounds. One of five soundscapes could be selected at all times by the caregiver or activity supervisor. When the majority of residents started to lose interest and/or focus, the caregiver or activity supervisor could signal the researchers to end the session sooner than the maximum duration of 1 h.

2.4 Data collection

A researcher was present in another room during each observation and followed the session through a remote screen. He/she interfered only when there was a malfunction of the CRDL or the recording equipment. In addition to the recording, field notes were taken.

2.5 Data analysis

A framework was used to structure the coded responses, which emerged from the results of a literature review on “Participant responses to physical, open-ended interactive digital artworks” (Luyten et al., 2017) and has previously been used to structure the responses of nursing home residents in relation to the interactive artwork VENSTER (Luyten et al., 2018) (Figure 2). The framework presents a structure in which the most common responses of people who interact with an open-ended interactive artwork (such as the CRDL) can be placed.

Figure 1 Overview of the position of CRDL, the camera and surroundings
2.6 Coding of responses

Responses were coded as “human-artwork” when only one person was involved, and his/her response was directed towards the CRDL. Responses were coded as “human-human” when two or more people were involved, and their responses were directed towards each other. When a response was individual, the coded name of the person was added; when two or more people were involved, all coded names were added, the initiator appearing first. If a person carried out two or more types of responses at the same time, the responses were recorded in all corresponding categories.

All understandable verbal feedback with reference to the CRDL, either directed towards the CRDL or to another person, was coded as “verbal responses” (e.g. a resident saying “that sounds like a train” to a caregiver). All distinguishable physical actions of any duration with reference to the CRDL, either directed towards the CRDL or to another person were coded as “physical responses” (e.g. a caregiver spinning the CRDL around its axis). All actions unrelated to the installation were coded as “not important to this study” and disregarded (e.g. conversation about pouring coffee).

Responses also were coded with the name of one or more corresponding categories of the aforementioned framework when they matched or alternatively got the label “open” if this was not the case. Lastly, responses were openly coded, which led to the emergence of sub-categories through clustering similar responses which are specific to the CRDL. For instance, the category
“Discussions about the (working of) the artwork holds the sub-categories comment on the CRDL functioning and comment on the CRDL build/material”.

The data are presented in tables, showing absolute numbers. Categories and sub-categories are arranged in the descending order from most occurrence to least. Between brackets, two numbers show the number of responses initiated by a caregiver or activity supervisor and the number of responses initiated by a resident respectively.

3. Results

Most of the recorded responses were of human–human nature (62 per cent, $n = 650$), mostly initiated by caregivers or activity supervisors ($n = 434$) (Table II). Both verbal ($n = 401$) and physical ($n = 252$) responses were recorded. Human–artwork responses (38 per cent, $n = 397$) were nearly all physical in nature ($n = 368$) and initiated more by residents ($n = 210$).

3.1 Human–human responses ($n = 650$)

3.1.1 Verbal responses ($n = 399$). Most discussions were about (the workings of) the artwork ($n = 222$) (Table III). Residents talked, asked questions ($n = 25$) and supervisors ($n = 31$) explained the functioning and controls ($n = 56$) of the CRDL. The sound and volume were often a topic of conversation ($n = 48$); while some could not hear the sounds, others thought they were too loud or annoying. The sounds the CRDL produces where recognised, named or remembered 42 times; residents identified the sound they recognised or remembered ($n = 12$) and supervisors named sounds they heard out loud to start a conversation or redirect the attention to the

<table>
<thead>
<tr>
<th>Table II</th>
<th>An overview of all responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>All responses 1,045 (619, 426)</td>
<td>Human–human 650 (434, 216)</td>
</tr>
<tr>
<td>Human–artwork 395 (185, 210)</td>
<td>Physical 251 (161, 90)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table III</th>
<th>Human–human responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human–human responses 650 (434, 216)</td>
<td>Verbal 399 (273, 126)</td>
</tr>
<tr>
<td>Providing/asking instructions or coaching 131 (124, 7)</td>
<td>Ask/comment on the CRDL functioning/controls 56 (31, 25)</td>
</tr>
<tr>
<td>Open 33 (25,8)</td>
<td>Ask/comment on the CRDL volume/sound 48 (28, 20)</td>
</tr>
<tr>
<td>Negotiating turns 13 (0, 13) (verbally) work together 0</td>
<td>(ask to) recognise/name/remember sound 42 (30, 12)</td>
</tr>
<tr>
<td>Physical 251 (161, 90)</td>
<td>Ask/comment on the CRDL purpose/concept 33 (8, 25)</td>
</tr>
<tr>
<td>Interact together with/through the artwork 206 (119, 87)</td>
<td>Comment on the CRDL build/material 26 (16, 10)</td>
</tr>
<tr>
<td>Regular touch hand/arm 63 (39, 24)</td>
<td>Ask for/provide instructions 41 (36, 5)</td>
</tr>
<tr>
<td>Tap hand/arm 46 (29, 17)</td>
<td>Conversations triggered by the CRDL (sounds) 32 (25, 7)</td>
</tr>
<tr>
<td>Smile/look amazed/non-verbal contact 52 (13, 39)</td>
<td>Saying the name of the CRDL 1 (0, 1)</td>
</tr>
<tr>
<td>Stroke hand/arm 37 (34, 3)</td>
<td>Refusal to interact/ask clarity 13 (0, 13)</td>
</tr>
<tr>
<td>Look/point to encourage 4 (0, 4)</td>
<td>Other types of touch 4 (0, 4)</td>
</tr>
<tr>
<td>Other types of touch 4 (0, 4)</td>
<td>Guide towards the CRDL pad/correct position 44 (42, 2)</td>
</tr>
<tr>
<td>Imitating/trying out together 45 (44, 1)</td>
<td>Mimic physical action 1 (0, 1)</td>
</tr>
<tr>
<td>Open 1 (0, 1)</td>
<td>Look at people interacting with the CRDL 1 (0, 1)</td>
</tr>
<tr>
<td>Democratic process/taking turns 0</td>
<td>/</td>
</tr>
</tbody>
</table>

P AGE 150 JOURNAL OF ENABLING TECHNOLOGIES VOL. 12 NO. 4 2018
CRDL \((n = 30)\). Some remarks were made and questions asked about the purpose or concept of the CRDL \((n = 33)\), largely by clients \((n = 25)\). The build and material of the CRDL got some attention as well \((n = 23)\); it was found to be an odd and interesting device of high quality and pleasant to the touch. Finally, caregivers and activity supervisors asked for the opinions of others \((n = 11)\) while residents were mostly the ones who expressed them \((n = 6)\).

Responses in the category providing instructions/coaching \((n = 131)\) were almost all carried out by caregivers or activity supervisors \((n = 124)\). They encouraged interaction \((n = 88)\) and provided instructions \((n = 36)\) on how to interact with the CRDL.

The open category holds conversations that were triggered by the sounds or interactions with the CRDL \((n = 32)\), mostly initiated by the caregivers or activity supervisors \((n = 25)\). One resident explicitly wanted to learn the name of the CRDL. Negotiating turns contains responses of residents asking for clarity or refusal to interact with the CRDL \((n = 13)\). They did not want to exit the activity but would rather watch from a distance or pass the “turn” to someone else.

No responses were noted in the category work together (verbally).

3.1.2 Physical responses \((n = 251)\). Most of the physical human–human responses occurred in the category interact together with/through the artwork \((n = 206)\). Most of these responses consisted of people touching each other on the hand or underarm \((n = 150)\). There were instances of regularly touching or holding hands \((n = 63)\), tapping \((n = 46)\) and stroking \((n = 37)\) as well as four instances of other means of touches (predominantly firmly grasping). Most of the touches were initiated by supervisors \((n = 119)\). Residents and caregivers or activity supervisors also smiled or looked amazed at each other \((n = 52)\), largely initiated by residents \((n = 39)\). Four times, a caregiver or activity supervisor explicitly looked or pointed at CRDL \((n = 4)\).

The category imitating/trying out together \((n = 45)\) was dominated by supervisors who guided the hands of residents towards/corrected position on CRDL \((n = 44)\). One resident physically mimicked the actions of someone else \((n = 1)\).

The open category had one response of a resident carefully looking at the actions of other people interacting with CRDL.

No responses were recorded in the category democratic process/taking turns. This emphasises that a caregiver or activity supervisor actively curated most interactions.

3.2 Human–artwork responses \((n = 395)\)

3.2.1 Physical responses \((n = 368)\). Most human–artwork interactions towards the CRDL were physical of nature \((n = 368)\) (Table IV). This is of course closely linked to the nature of the device.

<table>
<thead>
<tr>
<th>Table IV</th>
<th>Human–artwork responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human–artwork responses</td>
<td>Physical 368 (177, 191)</td>
</tr>
<tr>
<td>395 (185, 210)</td>
<td>Point/touch/body movement 247 (92, 155)</td>
</tr>
<tr>
<td></td>
<td>Touch the CRDL pad 139 (58, 81)</td>
</tr>
<tr>
<td></td>
<td>Touch the CRDL (not pad) 35 (6, 29)</td>
</tr>
<tr>
<td></td>
<td>(quickly) release the CRDL pad 29 (12, 17)</td>
</tr>
<tr>
<td></td>
<td>Tap the CRDL pad 25 (10, 15)</td>
</tr>
<tr>
<td></td>
<td>Move/tap to sound (not on the CRDL) 7 (1, 6)</td>
</tr>
<tr>
<td></td>
<td>Point/gesture from a distance 7 (3, 4)</td>
</tr>
<tr>
<td></td>
<td>Stroke the CRDL pad 5 (2, 3)</td>
</tr>
<tr>
<td></td>
<td>Control the CRDL settings 30 (30, 0)</td>
</tr>
<tr>
<td></td>
<td>Look at (hand on) the CRDL 22 (1, 21)</td>
</tr>
<tr>
<td></td>
<td>Close eyes/focus to listen 5 (0, 5)</td>
</tr>
<tr>
<td></td>
<td>Startle/notice sound suddenly 4 (1, 3)</td>
</tr>
<tr>
<td></td>
<td>Move/spin the CRDL 60 (53, 7)</td>
</tr>
<tr>
<td></td>
<td>Open 61 (32, 29)</td>
</tr>
<tr>
<td></td>
<td>Respond according to the affordance 60 (53, 7)</td>
</tr>
<tr>
<td></td>
<td>Describe what is seen 23 (8, 15)</td>
</tr>
<tr>
<td></td>
<td>Open 4 (0, 4)</td>
</tr>
<tr>
<td></td>
<td>Questions/comments on the workings of the CRDL 0</td>
</tr>
<tr>
<td>Verbal 27 (8, 19)</td>
<td>Recognise/mimic the sound 23 (8, 15)</td>
</tr>
<tr>
<td></td>
<td>Expression of joy 4 (0, 4)</td>
</tr>
<tr>
<td></td>
<td>/</td>
</tr>
</tbody>
</table>
The category body movement/point/touch holds 247 responses. When all touch-like responses are added together, they amount to 204 of all 395 human–artwork responses. Most of them initiated by residents (n = 128) Most were regular touches of the CRDL pad (n = 139) followed by touching the CRDL somewhere else (n = 35). The CRDL pad was also tapped (n = 25) and stroked (n = 5). Sometimes the CRDL was released quickly to try out whether the sound would stop (n = 29). Finally, there were some gestures from a distance (n = 7), mostly to point out the correct spot (pad) to touch the CRDL (n = 4).

The category respond according to affordance (n = 60) described responses that were evoked because of the way the CRDL looks. The CRDL was moved to get it within reach or spun around its axis, something mostly initiated by a caregiver or activity supervisor (n = 53).

Half of the open category responses (n = 61) consisted of a caregiver or activity supervisor controlling the settings of the CRDL (n = 30). They wanted to increase or decrease the volume or select another soundscape. Furthermore, there were residents looking at (their hand) on the CRDL with focus while they interacted (n = 22). Small numbers of residents closed their eyes a few times (n = 5) or were startled by a sudden sound pro (n = 4).

3.2.2 Verbal responses (n = 27). There were very few verbal responses in the human–artwork category (n = 29). Most of them were in the sub-category describe what is seen/heard (n = 25). Mainly residents (n = 17) recognised, named or remembered a sound and made that remark out loud. The remaining four responses were instances where a resident verbally expressed their joy while interacting with CRDL.

4. Discussion

In nursing homes, touch is mainly used in a therapeutic and functional way by staff. An increase in expressive touches and the conscious use of them could be beneficial for residents. However, touching each other outside of the strictly functional and necessary is uncommon, especially in a hierarchical relationship such as a caregiver or activity supervisor and a nursing home resident. Therefore, it was the aim of this study to describe how groups of nursing home residents respond to the CRDL.

The results show that use of the CRDL in a group setting creates opportunities for expressive and therapeutic touch. It generates an atmosphere of curiosity, a playful context and is an intermediary between people. This lowers the threshold to touch, provides an incentive to touch and encourages experimentation with different types of touches on the arms and hands because the produced sound changes accordingly. Additionally, the sounds the CRDL produces sometimes trigger memories and provide themes to start and support conversation. The large amount of discussion about the controls, functioning and purpose of the CRDL can be attributed to the novelty of the CRDL and will probably diminish over time.

To involve a large group is challenging. Caregivers and activity supervisors often had a hard time making multiple residents close a circle of hands and make them understand the outer edges should touch the CRDL pads. All caregivers and activity supervisors eventually switched to several small groups (three people) or individual interactions with the residents (two people) while the other participants watched.

4.1 Future development of the CRDL

All caregivers, activity supervisors and residents agreed the CRDL looked well designed, rich textured and luxurious. The material used to cover the device was soft and smooth to the touch. However, the CRDL could benefit from a design iteration, as residents did not initially understand that the CRDL was designed to be touched. Additionally, the contrast between the touch pads and the wooden body of the CRDL was low; thus, it is unclear where a participant or user needed to place their hand. Because residents have to undertake two actions at once (place a hand on the felt pad and simultaneously use the other to touch someone else), they often forget that their hand needs to be on the felt pad. As a result of the rounded design of the CRDL, their hand slid off and the interaction was interrupted. The felt pad could be redesigned
in such a way that a grip or hole is added so the hand is less likely to slide off when not actively kept in place.

The differences in interests, visual and auditory functioning and mental capabilities between individuals who live in a closed nursing home ward are large. A uniform volume, for instance, does not cater to the whole group; while some did not even register the sounds when at full volume, others became annoyed because of the loud “noise”. Additionally, the interface to adjust volume and select another soundscape is too hard to reach for the caregivers and activity supervisors. The buttons also seem to be too deep to reach comfortably.

In order to make it easier for people who live with severe dementia to engage with the CRDL and for people who need a more complex challenge to remain engaged for a longer period, the design should incorporate opportunities for differentiation to address different needs and capabilities. The current soundscapes could be expanded with additional sounds and pieces of recognisable music to cater to different individual preferences (tailored content) and cognitive functioning. More research and development are required.

4.2 Study limitations

The current study was explorative; it investigated how groups of nursing home residents respond to the CRDL. Effects on the emotional state and/or wellbeing of the residents during and after the sessions were not studied and no differentiation in cognitive functioning has been made when selecting the participants.

If a resident carried out two or more types of response at the same time, these were coded in all corresponding categories. This has influenced the total number of responses, possibly overstating some responses.

Moreover, the duration of interactions was not measured, which might have distorted some results. For example, when CRDL was touched, this was recorded only once. Because the duration is not taken into account, it has the same value as a quick glance or a touch that occurred while CRDL was continuously touched.

4.3 Implications for research

The results of this study illustrate the potential of interactive devices such as the CRDL in nursing home environments. In order to more fully understand the potential of the CRDL, its use should be studied in different group and individual sessions and the effects of tailored content, adjusted to individual preferences and/or stages of cognition should be explored. Finally, the effects of using the CRDL on the general wellbeing of nursing home residents should be studied.

4.4 Implications for practice

The CRDL has the potential to evoke interactions in the form of touches between residents and caregivers that otherwise would not occur as often or consciously. Furthermore, it is suited to start and support conversations in a group.

When the CRDL is used in a group setting during routine care, the session should be guided by an experienced caregiver, preferably an activity supervisor or music therapist. Some familiarisation and practice with the CRDL, such as knowing about and using the different settings and getting used to its possibilities to activate and engage residents, are advised. To make a group session work, a quiet environment with little sensory stimulation is advised.

5. Conclusion

The results of this study show that the CRDL can help caregivers and activity supervisors to use touch as an alternative way to make contact with groups of their residents. The potential for use of the CRDL in private sessions (two people) and as a tool to (re)establish contact with friends and family could also be further studied. The use of the CRDL requires
some practice on the part of the therapist or staff member. Design improvements and differentiation of sounds and soundscapes may improve overall experience and better meet individual needs or preferences.

References

Mind Manager (Computer software) (2018), Mind Manager, San Francisco, CA.

Corresponding author
Tom Luyten can be contacted at: tom.luyten@zuyd.nl

For instructions on how to order reprints of this article, please visit our website: www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com