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For self-regulated learning to be effective, students need to be able to accurately assess their own
performance on a learning task and use this assessment for the selection of a new learning task. Evidence
suggests, however, that students have difficulties with accurate self-assessment and task selection, which
may explain the poor learning outcomes often found with self-regulated learning. In experiment 1, the
hypothesis was investigated and confirmed that observing a human model engaging in self-assessment,
task selection, or both could be effective for secondary education students’ (N ¼ 80) acquisition of self-
assessment and task-selection skills. Experiment 2 investigated and confirmed the hypothesis that
secondary education students’ (N ¼ 90) acquisition of self-assessment and task-selection skills, either
through examples or through practice, would enhance the effectiveness of self-regulated learning. It can
be concluded that self-assessment and task-selection skills indeed play an important role in self-
regulated learning and that training these skills can significantly increase the amount of knowledge
students can gain from self-regulated learning in which they choose their own learning tasks.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Self-regulated learning is an active, constructive process in
which learners plan, monitor, and control their own learning
process (e.g., Pintrich, 2000; Winne, 2001; Winne & Hadwin, 1998;
Zimmerman, 1990; Zimmerman & Schunk, 2001). Self-regulated
learning can occur at different levels, from learners controlling
how long they engage in studying a given task or whether they
want to restudy it (Karpicke, 2009; Metcalfe, 2009; Thiede &
Dunlosky, 1999), to learners controlling what information they
want to study (e.g., in a hypermedia learning environment;
Azevedo, 2005; Azevedo & Cromley, 2004; Azevedo, Moos, Greene,
Winters, & Cromley, 2008) or what learning tasks they want to
work on (Corbalan, Kester, & Van Merriënboer, 2008; Kostons, Van
Gog, & Paas, 2010; Ross, Morrison, & O’Dell, 1989). This article
focuses on self-regulated learning in which learners can choose
their own learning tasks. Research has shown that having control
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over what information to study or what tasks to work on is not
effective for novices’ self-regulated learning (Azevedo et al., 2008;
Goforth, 1994; Lawless & Brown, 1997; Niemiec, Sikorski, &
Walberg, 1996; Williams, 1996). We assume that this may be due
to novices’ lack of self-assessment and task-selection skills, which
play a crucial role in this kind of self-regulated learning. To verify
this assumption, we investigate whether training these skills
results in higher self-assessment and task-selection accuracy
(Experiment 1) and whether this in turn leads to higher learning
outcomes attained through self-regulated learning (Experiment 2).

Providing learners with control over the learning tasks they
work on is believed to foster their self-regulated learning skills and
to result in personalized learning trajectories (Hannafin, 1984;
Williams, 1996). Rather than having all learners follow the same
instruction or practice schedule, which is often targeted at the
average learner, personalized instruction allows learners who have
difficulty with a task or topic to start at a lower level of complexity
or obtain more support, while learners who find the new material
easy can quickly move on to more complex materials. Such
personalized instruction is expected to enhance students’ motiva-
tion and learning outcomes more than non-personalized instruc-
tion that is the same for all students (Niemiec et al., 1996; Pintrich,
2004; Schnackenberg & Sullivan, 2000). However, there is little
ent and task-selection skills: A cognitive approach to improving self-
truc.2011.08.004
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evidence for both assumptions. First of all, research has shown that
students do not apply and acquire self-regulation skills merely by
engaging in self-regulated learning, but rather need additional
training or instructional support such as prompts or tutoring (e.g.,
Aleven & Koedinger, 2002; Azevedo & Cromley, 2004; Van den
Boom, Paas, & Van Merriënboer, 2007; Van den Boom, Paas, Van
Merriënboer, & Van Gog, 2004). Secondly, although the assump-
tion seems to be correct that personalized instruction can foster
learning more compared to non-personalized instruction (e.g.,
Anderson, Corbett, Koedinger, & Pelletier, 1995; Camp, Paas, Rikers,
& Van Merriënboer, 2001; Koedinger, Anderson, Hadley, & Mark,
1997; Salden, Paas, Broers, & Van Merriënboer, 2004), it is ques-
tionable whether self-regulated learning actually results in the
adaptivity to students’ needs that is required for effective person-
alized instruction.

When an instructional system is used to personalize instruction,
it does so by monitoring and assessing a student’s current level of
knowledge and skill to select or suggest an appropriate next
learning task. The assessment can be comprised of several aspects
of students’ performance (e.g., Anderson et al., 1995; Kalyuga &
Sweller, 2004; Koedinger et al., 1997) or a combination of their
performance and invested mental effort (e.g., Camp et al., 2001;
Corbalan et al., 2008; Kalyuga, 2006; Salden et al., 2004). For self-
regulated learning to be equally adaptive and effective, students
should be able to accurately monitor and assess their own perfor-
mance and recognize what an appropriate next task would be.
However, there is quite some evidence that students, particularly
novices who lack prior knowledge of the learning tasks, are not
very accurate at monitoring, self-assessment, or task selection.

By monitoring one’s own performance while working on a task,
a student can construct a mental representation of the task
performance process, which is considered to be a prerequisite for
accurate self-assessment (e.g., Kostons, Van Gog, & Paas, 2009).
However, both activities compete for limited working memory
resources, which might become problematic under conditions of
high cognitive load, as monitoring, task performance, or both may
be negatively affected by a lack of resources (Van Gog, Kester, &
Paas, 2011). Most learning tasks impose a high cognitive load,
especially for novice learners (Sweller, Van Merriënboer, & Paas,
1998). When concurrent monitoring is hampered, learners will
have a poor recollection of their performance (Kostons et al., 2009),
which may hamper their self-assessment of that performance after
the task.

But evenwith a good recollection of performance, accurate self-
assessment is not guaranteed. Self-assessment may also be
hampered by several biases that may cause learners to depend on
the wrong kind of cues to assess their performance (for a review,
see Bjork, 1999), such as hindsight bias (i.e., once an answer or
solution procedure is known, e.g., after feedback, students aremore
likely to think that they could have produced it themselves), or
availability bias (i.e., answers that come to mind easily are not only
more likely to be provided but are also more likely to be assumed
correct). Moreover, accurate self-assessment also seems to require
some domain expertise (Dunning, Heath, & Suls, 2004; Dunning,
Johnson, Erlinger, & Kruger, 2003). Individuals with higher levels
of prior knowledge have been found to be more accurate self-
assessors. This may be because their experience lowers the cogni-
tive load imposed by the learning task (see Sweller et al., 1998),
allowing them to devote more cognitive resources to monitoring
their task performance, which likely provides them with a more
accuratememory representation onwhich to base their assessment
(Van Gog et al., 2011). In addition, learners may know that they
should compare their performance to some standard, but do not
know what criteria and standards their performance should meet
(Dunning et al., 2004; Kostons et al., 2009). For example, a study by
Please cite this article in press as: Kostons, D., et al., Training self-assessm
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Tsivitanidou, Zacharia, and Hovardas (2011) investigated unsup-
ported peer-assessment practices by students and the results
showed that the overlap between assessment criteria formulated
by the students themselves and assessment criteria determined by
experts was very low. Individuals with more prior knowledge
might be more accurate self-assessors because their experience
provides them with more knowledge of the criteria and standards
that good performance should meet (Dunning et al., 2003, 2004).

Inaccurate self-assessment, in turn, may negatively affect
selection of an appropriate new learning task, for example, if
students overestimate their performance, they may choose a task
that is too difficult for them (cf. Azevedo, Guthrie, & Seibert, 2004;
Moos & Azevedo, 2008a; Shapiro, 2004). Learners should ideally
select tasks that are challenging, but not too difficult (cf. Vygotsky’s,
1978, concept of ‘zone of proximal development’). In practice,
learners tend to select tasks that they are confident they can
perform (i.e., self-efficacy, Bandura, 1997), but if those learners are
over- or under-confident, selected tasks will not fit actual learning
needs (Pajares & Kranzler, 1995; Stone, 1994). Moreover, evenwhen
self-assessment is accurate, novices may still experience problems
in selecting appropriate learning tasks. When selecting a task, it is
important to discern which aspects of a task are relevant for
learning, such as the structural features of the task (e.g., type of
task, complexity level, amount of support provided), and which
aspects are less relevant, such as superficial cover stories (i.e.,
elements of the task story that are used to contextualize the
problem, but do not alter the problem-solving procedure; see Fig. 1
for examples). Research has shown that novices may experience
difficulties in discerning between these aspects (Chi, Glaser, & Rees,
1982; Quilici & Mayer, 2002; Ross, 1989) and tend to choose tasks
based on irrelevant aspects (Ross & Morrison, 1989). When task
selection is inaccurate, the chosen tasks are unlikely to fit the
learner’s level of prior knowledge or skills, so learners will end up
working on tasks that are not aligned with their learning needs.

In sum, inaccuracies in self-assessment and task selection may
lead to ineffective self-regulated learning when learners can select
their own learning tasks. Support for this assumption comes from
studies that have shown that providing novice learners with
control over their learning process may have beneficial effects on
their motivation or involvement (e.g., Corbalan et al., 2008;
Schnackenberg & Sullivan, 2000), but has detrimental effects on
learning outcomes when compared to teacher or computer
controlled fixed or personalized instruction (see e.g., Azevedo et al.,
2008; Lawless & Brown, 1997; Niemiec et al., 1996; Williams, 1996).
Beneficial effects on learning outcomes attained through self-
regulated learning have been found mainly for learners with
higher levels of prior knowledge (Lawless & Brown, 1997; Moos &
Azevedo, 2008b, 2008c; Niemiec et al., 1996; Scheiter & Gerjets,
2007; Schnackenberg & Sullivan, 2000; Steinberg, 1989), who, as
mentioned above, are better able to monitor and assess their own
performance than novices. In addition, Kostons et al. (2010)
investigated whether secondary education students who differed
in the amount of knowledge gained from studying in a self-
regulated learning environment, also differed in self-assessment
and task-selection skills. They found that students who gained
more knowledge, were also more accurate self-assessors, andmade
better use of that assessment when selecting new tasks.

Given the important role that self-assessment and task-
selection skills can be considered to play in the effectiveness of
self-regulated learning, an important question is whether novice
learners can be trained to become more accurate self-assessors and
task selectors. This question is addressed in Experiment 1. If so, an
even more important question, which is addressed in Experiment
2, is whether such training can improve the learning outcomes
novices attain through self-regulated learning.
ent and task-selection skills: A cognitive approach to improving self-
truc.2011.08.004
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2. Experiment 1

Experiment 1 aimed to investigate whether an example-based
training of self-assessment and task-selection skills led to higher
accuracy of self-assessment and task selection. Research onworked
examples inspired by cognitive theories such as ACT-R (Anderson,
1993; Van Merriënboer & Sweller, 2005) and cognitive load
theory (Sweller,1988; Sweller et al., 1998) and research onmodeling
examples inspired by social learning theory (Bandura, 1986) and
cognitive apprenticeship (Collins, Brown, & Newman, 1989) has
shown that both of these types of example-based learning are
highly effective during the initial stages of problem-solving skill
acquisition (for reviews, see Atkinson, Derry, Renkl, & Wortham,
2000; Van Gog & Rummel, 2010). Whereas worked examples are
primarily based on a written account of a model’s problem-solving
procedure, modeling examples involve observing a model per-
forming the task, which can take a variety of forms, not only live
observation, but also watching a video inwhich the model is visible
(e.g., Braaksma, Rijlaarsdam, & Van den Bergh, 2002), a video
consisting of a screen capture of the model’s computer screen in
which the model is not visible (though s/he can be heard when
a spoken explanation of what s/he is doing is provided; e.g.,
McLaren, Lim, & Koedinger, 2008; Van Gog, Jarodzka, Scheiter,
Gerjets, & Paas, 2009), or an animation in which the model is
represented by a pedagogical agent (e.g., Atkinson, 2002; Wouters,
Paas, & Van Merriënboer, 2009).
Please cite this article in press as: Kostons, D., et al., Training self-assessm
regulated learning, Learning and Instruction (2011), doi:10.1016/j.learnins
Interesting from the perspective of the goal of our study, is that
modeling examples have not only been used for teaching problem-
solving skills (e.g., Schunk, 1981; Schunk & Hanson, 1985; McLaren
et al., 2008) but also for improving self-regulatory skills, for example
in trying to improve dart-throwing skills (Kitsantas, Zimmerman, &
Cleary, 2000) or writing skills (Zimmerman & Kitsantas, 2002). In
the study by Kitsantas et al., for example, students were shown
either coping models (models who initially made many mistakes
but gradually eliminated them) or mastery models (models who
showed flawless performance from the start). While observing the
coping models, students had to indicate whether the model made
an error, and this was confirmed by the experimenter; if they did
not notice an error, the experimenter informed them of it. Obser-
vation of a coping model led to higher dart-throwing skill, higher
self-efficacy, higher intrinsic interest, and higher satisfaction with
one’s performance than observation of a mastery model, which led
to higher skill, self-efficacy, interest, and satisfaction than having
had no model. A similar pattern of results was found by
Zimmerman and Kitsantas (2002) in their study of writing. These
studies show that modeling examples can have positive effects on
self-regulatory processes such as self-reactions (i.e., satisfaction),
self-efficacy perceptions, and intrinsic interest.

However, the self-regulation measures these studies focused on
were mostly affective in nature (i.e., self-reactions, self-efficacy,
intrinsic interest). Furthermore, even though the coping models
can be argued to model self-regulated learning, in the sense that
ent and task-selection skills: A cognitive approach to improving self-
truc.2011.08.004
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they started by making many errors but slowly reduced them, this
self-regulated learning process was not addressed explicitly, and it
was up to the students to notice the model’s errors (i.e., there is no
indication in the articles that the models verbalized awareness of
errors or how to cope with them). So these studies did not inves-
tigate whether self-assessment or task-selection skills can be ob-
tained through modeling of self-assessment or task selection. It
could be argued that self-satisfaction could be a proxy for students’
self-assessment (though it was assessed only once at the end of the
entire test, instead of after each task), but that skill was not
modeled. Moreover, task selection did not play a role in these
studies.

Our study investigates whether explicit modeling of self-
assessment and task-selection skills can improve these skills and
foster self-regulated learning in which learners have control over
the tasks they practice. We used modeling examples consisting of
computer screen-recordings with spoken text to investigate our
hypothesis that training secondary education students’ self-
assessment and task-selection skills would enhance the accuracy
of those skills (hypothesis 1). By providing students with either no
self-assessment and task-selection examples, only self-assessment
examples, only task-selection examples, or both self-assessment
and task-selection examples, we were not only able to investigate
whether self-assessment and task selection can be trained, but also
to determine whether an increase in accuracy in one skill would
transfer to the other, for example, whether an increase in self-
assessment accuracy would also lead to an increase in task-
selection accuracy even if the latter was not modeled. Although
we assume self-assessment outcomes to play an important role as
input for task-selection, task selection constitutes a different skill
and therefore we hypothesize that training one skill would not
transfer, that is, would not lead to better performance on the other,
at least when task selection performance is controlled for self-
assessment accuracy (hypothesis 2).

2.1. Method

2.1.1. Participants and design
Participants were 80 Dutch students (44 female, 36 male; age

M ¼ 15.23, SD ¼ 0.53) in their fourth year of pre-university
education (i.e., the highest level of secondary education in the
Netherlands with a six year duration) from a single school in the
southern part of the Netherlands. All participants were used to
working with computers; they had multiple lessons each week in
which they utilized computers. A 2 � 2 factorial design was used
with factors Self-Assessment Modeling Examples (Yes vs. No) and
Task-Selection Modeling Examples (Yes vs. No). Participants were
randomly assigned to one of the four conditions: (1) self-
assessment and task-selection modeling examples (SA þ TS;
n ¼ 20), (2) only self-assessment modeling examples (SA; n ¼ 20),
(3) only task-selection modeling examples (TS; n ¼ 19), or (4) no
self-assessment or task-selection examples (NO; n ¼ 21). Students
had not yet received any formal education on heredity, which is the
subject of the learning materials used in this study.

2.1.2. Materials
2.1.2.1. Pretest and posttest. The pretest and posttest consisted of
five paper and pencil heredity problems on the laws of Mendel, at
five levels of complexity (for an example of a hereditary problem,
see Appendix 1; for examples of test questions, see Appendix 2).
The problems were presented in random order (i.e., not in order of
complexity) and the order differed between the pretest and post-
test. The posttest contained problems that were equivalent but not
identical to the pretest problems: they had similar structural
features but the surface features (cover stories) differed. The
Please cite this article in press as: Kostons, D., et al., Training self-assessm
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problems could be solved in five steps: (1) translating the pheno-
types (i.e., expressions of genetic traits) described in the cover story
into genotypes (a pair of upper and/or lower case letters repre-
senting genetic information); (2) putting these genotypes into
a hereditary diagram; (3) determining the number of required
Punnett Squares by looking at the direction of reasoning (deduc-
tive/inductive); (4) filling in the Punnett Square(s); and (5)
extracting the final solution(s) from the Punnett Square(s). On both
tests, participants were instructed to not only provide the final
answer, but also write down the steps they took to reach the
solution.

2.1.2.2. Mental effort rating. After each problem in the pretest and
posttest, participants rated how much mental effort they had
invested in solving the problem on a nine-point rating scale
developed by Paas (1992) which ranges from (1) “very, very little
effort” to (9) “very, very much effort”. This single item is applied
immediately after each learning task. It has been shown to be
reliable and sensitive for differences in task complexity (i.e., the
higher the complexity, the higher the mental effort ratings: Paas,
Van Merrienboer, & Adam, 1994) and has been used frequently in
the context of cognitive load research (for reviews, see Paas,
Tuovinen, Tabbers, & Van Gerven, 2003; Van Gog & Paas, 2008).
In this study, the mental effort ratings were additionally used for
determining appropriate task selection in line with the method for
system-controlled task selection used in the studies by Camp et al.
(2001), Corbalan et al. (2008), Salden et al. (2004) and Salden, Paas,
and Van Merriënboer (2006) where a system rather than the
learner made task selections.

2.1.2.3. Self-assessment. After completing the mental effort scale
following each task, participants self-assessed their performance
on that task on a single, six point rating scale ranging from 0 to
5, assigning one point for each step in the problem-solving
process they thought they had performed correctly, that is, (0)
indicated “none of the steps correct” and (5) indicated “all steps
correct”. So self-assessment was not only operationalized as an
evaluation of the outcome (step 5), but also as an evaluation of
the problem-solving process, that is, of the steps taken to reach
that outcome (steps 1e4). After the experiment, participants’
performance on each task was scored by the experimenter on
the same scale, also assigning one point for each solution step
performed correctly, resulting in a maximum score of 25 on the
pre- and posttest.

2.1.2.4. Task selection. After self-assessment, participants were
informed what the complexity level was of the problem they had
just worked on and were asked to indicate on an overview of the
task database (see Fig. 1) what problem they would have selected
next. Note though, that they did not get to work on that problem
because the tasks in the pretest, modeling example phase, and
posttest were the same for all students. The task database con-
tained tasks at five levels of complexity (left column) and at each
level, there were tasks that contained three levels of support: 1)
high support: completion problems (i.e., partially worked-out
examples that the learner has to complete, see Paas, 1992) with
many steps already worked out and few for the learner to complete
(white row); 2) low support: completion problems with few steps
already worked out and many for the learner to complete (light
gray row); and 3) no support: conventional problems which
participants had to complete entirely (dark gray row). At each level
of support within each complexity level, there were five tasks to
choose from, which consisted of different cover stories (e.g., hair
color, disorders; see Fig.1). These cover stories did not influence the
underlying structure of the problem-solving tasks, that is, all
ent and task-selection skills: A cognitive approach to improving self-
truc.2011.08.004
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problems within a complexity level could be solved using the same
procedure.

2.1.2.5. Modeling examples. Participants were given four modeling
examples consisting of digital videos of the model’s computer
screen recorded with Camtasia Studio, along with a spoken
explanation by themodel. Themodeling examples were scripted by
the authors and then recorded. The gender of the models varied:
two examples were by two different male models, and the other
two examples were by two different female models (because the
model’s gender might possibly influence students’ learning by
affecting self-efficacy; Schunk, 1989). The four examples either
showed the model solving a heredity problem (NO), the model
solving a heredity problem and assessing his or her own perfor-
mance (SA), the model solving a heredity problem and selecting
a new task based on a performance score that was presented as
a given and not further explained (TS), or the model solving
a heredity problem, assessing his or her own performance, and
selecting a new task (SA þ TS), depending on the assigned condi-
tion. The content of the examples was as follows:

(1) Problem solving (all conditions). The model performed the
problem-solving task and provided a verbal explanation about
which steps were taken, how to perform these steps, and why
these steps had to be performed. Two models worked on
problems of complexity level 1, and two models worked on
problems of complexity level 2 (i.e., of the five complexity
levels present in the task database and in the pretest and
posttest; see Table 1). The quality of the models’ performance
varied between the examples: the first example showed
a model accurately solving the problem, but in the other three
examples the models made one or more errors (see Table 1).
This was done to create variability in phases 2 and 3 of the
examples, that is, in the model’s self-assessment scores and
task selections (i.e., if the model would not make any errors or
would detect and correct them immediately, they would
always have the highest possible self-assessment score).
Following task performance, the models rated their invested
mental effort on the nine point rating scale.

(2) Self-assessment (SA and SA þ TS conditions): The models
assessed their performance on the 6-point rating scale,
providing a verbal explanation of how they were going about
self-assessment and assigning themselves one point for each
problem-solving step that had been performed correctly. The
models’ self-assessment was always accurate, that is, whereas
some of the models made mistakes during problem-solving,
none of them made any mistakes during self-assessment (i.e.,
if they had made an error during problem solving, they
mentioned this during self-assessment and assigned them-
selves 0 points for that step). Participants were made aware of
this through instruction on the screen at the start of the
experiment.

(3) Task selection (TS and SA þ TS conditions): The model selected
a new task based on a combination of the performance score
and the mental effort score, providing a verbal explanation of
why both self-assessed performance and self-rated mental
Table 1
Modeling example characteristics.

Example Model Problem-solving performance Problem complexity level

1 Male 1 0 errors Level 1
2 Female 1 2 errors Level 1
3 Male 2 4 errors Level 2
4 Female 2 1 error Level 2

Please cite this article in press as: Kostons, D., et al., Training self-assessm
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effort were taken into account in the selection, and how to go
about selecting a new task using these two variables as input.
The models used a table (see Fig. 2) in which the relationship
between performance and mental effort scores was depicted.
This table could be used to infer a recommended ‘step size’ for
task selection. For example, a performance score of three, and
a mental effort score of two, would result in a step size of þ2,
which essentially indicates the number of rows one is recom-
mended to go back or progress to in the second column from
the left in Fig. 1. A positive step size means a recommendation
to select a more challenging task (i.e., less support or higher
complexity level), a step size of zero means repeating
a comparable task (i.e., same level of support and same
complexity level), and a negative step size means a recom-
mendation to select a simpler task (i.e., higher level of support
or lower level of complexity). This kind of task-selection algo-
rithm, based on performance and mental effort scores, has
proven to lead to an effective learning path in studies on
adaptive, personalized task selection (e.g., Camp et al., 2001;
Corbalan et al., 2008; Kalyuga, 2006; Salden et al., 2004). The
models’ task selection was always accurate, that is, the models
always chose a task in line with the rules for task selection we
presented, and participants were made aware of this through
instruction on the screen at the start of the experiment.

Participants in the NO condition observed the model’s only
performing the problem-solving task. In the time in which the
participants in the other conditions observed the model’s self-
assessment and/or task selection, participants in the NO condi-
tion were instructed to indicate whether the model made any
errors during task performance, and if so, what the errors were and
what the correct step would have been. Finding and fixing errors in
examples may foster the acquisition of problem-solving skills (see
Große & Renkl, 2007), and it can also be expected to direct students’
attention toward assessment of performance (of the model) to
some extent.

2.1.3. Procedure
The experiment was conducted in a computer room at the

participants’ school in sessions of approximately 70 min, with
10e24 students per session. Prior to the experiment, participants
had been randomly assigned to conditions. First, all participants
completed the pretest on paper. They were given four minutes to
complete each problem, followed by one minute for assessing their
performance and selecting a next learning task (a previous study
using the same problems had shown this to be sufficient time for
solving conventional problems; Kostons et al., 2010). Students did
not receive any feedback on whether their task-performance, self-
assessment or task selections were correct. Participants were not
allowed to proceed to the next problem before the time was up and
time was kept by the experimenter using a stopwatch. After
completing the pretest, participants studied the modeling
Fig. 2. Determining task-selection step-size using performance and mental effort
scores.

ent and task-selection skills: A cognitive approach to improving self-
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examples on the computer which varied according to their assigned
condition (seematerials section). Each participant had a headset for
listening to the model’s explanations. Finally, all participants
completed the posttest on paper, according to a procedure similar
to the pretest.

2.1.4. Data analysis
Self-assessment accuracy was determined by computing the

absolute difference between participants’ objective performance
score and their self-assessed performance score. The lower this
difference, the more accurate participants’ self-assessment was
(i.e., 0¼ 100% accurate). For example, a student with a self-assessed
score of 4, but an objective score of 1, would have a difference score
of 3, which is fairly inaccurate, whereas a student with a self-
assessed score of 4, but an objective score of 5, would have
a difference score of 1, which is fairly accurate. Each participant’s
mean self-assessment accuracy was computed for the posttest, not
including those problems on which both the objective and the
subjective assessment were zero. This was done becausewe did not
want to overestimate self-assessment accuracy; it is logical that
students can state quite accurately that they were not able to solve
a problem at all, and this is probably not very indicative of their
self-assessment skill. This is also the reason why we will not
analyze mean self-assessment and task-selection accuracy on the
pretest: in both conditions there were too many problems that had
not even been partially solved. We included self-assessment and
the task-selection ratings in the pretest so that participants would
get acquainted with them, as the models in the experimental
conditions also used these and participants had to use them again
during the posttest.

Task-selection accuracy was determined by first recoding
subjective (i.e., self-assessed) performance scores and the mental
effort scores indicated by the participants according to the table
that was also used for the task-selection by the model (see Fig. 2),
and then reading off the recommended step-size from this table.
Recommended step size, essentially indicates the number of rows
one is recommended to go back or progress to in the second column
from the left in Fig. 1. For example, if a participant had completed
the conventional problem at complexity level 2 and was recom-
mended to progress two steps, this recommendation meant to
choose a task with low support at complexity level 3. The absolute
difference between the recommended step size and the step size
chosen by the participant was then computed to indicate task-
selection accuracy based on participants’ self-assessed perfor-
mance score. For five participants, task-selection accuracy could not
be computed due to missing values in mental effort or task-
selection data. One could also compute task-selection accuracy
based on the objective performance scores, but we preferred to use
the self-assessed performance score because this does not penalize
participants for inaccuracies in their self-assessment, while using
the objective performance score would.

2.2. Results

Data were analyzed using 2 � 2 ANOVAs with Self-Assessment
Modeling Examples and Task-Selection Modeling Examples as
factors, and the significance level set at 0.05. Partial eta squared (hp2)
is reported as a measure of effect size, 0.01, 0.06, and 0.14 corre-
sponding to small, medium, and large effect sizes, respectively.
Note that exploration of our data indicated that not all variables
were normally distributed. Therefore, we also performed non-
parametric tests (Field, 2005; Siegel, 1957), which led to the same
pattern of results with regards to the main effects as the parametric
tests. Because both parametric and non-parametric analyses led to
the same conclusions with regard to H0 rejections, but we could not
Please cite this article in press as: Kostons, D., et al., Training self-assessm
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investigate interactions non-parametrically, we report the para-
metric data.

2.2.1. Pre-analysis
Pretest data from two participants were missing. Participants’

mean performance on the pretest problems was 3.42 (SD ¼ 5.01),
and their mean performance on the posttest problems was 15.74
(SD ¼ 6.08) indicating participants acquired procedural skills for
solving heredity problems from the modeling examples. A 2 � 2
ANOVA with self-assessment modeling examples and task-
selection modeling examples as independent variables and the
pretest to posttest knowledge gain as dependent variable did not
show any significant differences between conditions, F(3, 74) < 1,
ns. There were also no significant correlations between individual’s
pre-test scores, pre-to-posttest learning gains, self-assessment
accuracy or task-selection accuracy (all p > 0.20), indicating that
these variables were independent from each other, as one would
expect given this design.

2.2.2. Self-assessment accuracy
In line with hypothesis 1, a 2 � 2 ANOVA with self-assessment

modeling examples and task-selection modeling examples as
independent variables and self-assessment accuracy as dependent
variable showed a significant main effect of the factor Self-
Assessment Modeling Examples, indicating that participants who
had studied self-assessment modeling examples were more accu-
rate (M ¼ 0.81, SD ¼ 0.54) than participants who had not studied
those examples (M ¼ 1.23, SD ¼ 0.75), F(1, 76) ¼ 8.04,MSE ¼ 33.08,
p ¼ 0.006, hp2 ¼ 0.10. No main effect of Task-Selection Modeling
Examples nor an interaction effect was found, both F(1, 76) < 1, ns,
which is in line with hypothesis 2.

2.2.3. Task-selection accuracy
In line with hypothesis 1, a 2 � 2 ANOVA with self-assessment

modeling examples and task-selection modeling examples as
independent variables and task-selection accuracy as dependent
variable task-selection accuracy showed a significant main effect of
Task-Selection Modeling Examples, indicating that participants
who had studied task-selection modeling examples were more
accurate (M ¼ 2.31, SD ¼ 2.18) than participants who had not
studied those examples (M ¼ 3.96, SD ¼ 2.06), F(1, 71) ¼ 11.57,
MSE ¼ 323.27, p ¼ 0.001, hp

2 ¼ 0.14. No main effect of Self-
Assessment Modeling Examples, nor an interaction effect was
found, both F(1, 71) < 1, ns, which is in line with hypothesis 2.

2.3. Discussion

Results of this experiment showed, in line with hypothesis 1,
that students can acquire self-assessment and task-selection skills,
which are considered to play a pivotal role in the effectiveness of
self-directed learning, from studying modeling examples. In line
with hypothesis 2, the results suggest that self-assessment and
task-selection skills are different enough to justify the need for
explicit training of both, as we found no indications (i.e., no inter-
action effects) that an increase in self-assessment accuracy also led
to an increase in task-selection accuracy (or vice versa) when the
latter was not modeled.

All students gained problem-solving skills from the examples,
and there were no differences between conditions in problem-
solving skill acquisition. For reasons of experimental control, all
students received the same tasks on the posttest, so in this exper-
iment they did not actually get to work on the tasks they had
selected. A very important question, therefore, is whether students
can apply the self-assessment and task-selection rules they
acquired from studying modeling examples in a self-regulated
ent and task-selection skills: A cognitive approach to improving self-
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learning environment in which they are allowed to select which
problems towork on. If they are able to do so, wewould expect this
to enhance the learning outcomes attained through self-regulated
learning. This question is addressed in Experiment 2.

In this first experiment, we chose modeling examples as
a means to train self-assessment and task-selection skills, because
research has shown that example-based learning is a powerful
instructional strategy. Thus far, in educational settings, examples
have mostly been used for teaching cognitive skills, and this study
adds further evidence that they are useful for teaching meta-
cognitive skills as well (see also Kitsantas et al., 2000; Zimmerman
& Kitsantas, 2002). A lot of research, especially on learning from
worked examples, has demonstrated that for the acquisition of
problem-solving skills instruction consisting of studying examples
is more effective for novices than instruction consisting of prac-
ticing problem solving (see Atkinson et al., 2000; Sweller et al.,
1998; Van Gog & Rummel, 2010). In this study, we did not inves-
tigatewhether training self-assessment and task-selection skills via
modeling examples was more effective than training those skills in
some other way, for example via practice after having been
explained the assessment and selection rules (i.e., how to come to
a performance assessment score and how to combine performance
and mental effort scores to select a new task). Therefore, Experi-
ment 2 also investigated the effectiveness of examples compared to
practice with self-assessment and task-selection rules.

3. Experiment 2

This experiment investigated the effects of teaching self-
assessment and task-selection skills on the effectiveness of self-
regulated learning. Learning outcomes attained after engaging in
self-regulated learning will be compared for students whowere not
taught those skills, students who were taught those skills via
modeling examples as in Experiment 1, and students who were
taught those skills by explaining them the self-assessment and
task-selection ‘rules’ and then allowing them to practice applica-
tion of these rules by having them assess the model’s performance
and subsequently select a new task for the model based on that
assessment. This third condition thus involves a kind of ‘peer-
assessment’. Peer-assessment is often implemented not only as
a grading procedure, but also as a means to foster the development
of both content knowledge and assessment skills (Dochy, Segers, &
Sluijsmans, 1999). It has been suggested that engaging in peer-
assessment activities might also develop self-assessment skills
(Dochy et al., 1999; Somervell, 1993). However, only a few studies
have tried to empirically demonstrate that assessing a peer’s
performance may subsequently improve self-assessment skills (see
Oldfield & Macalpine, 1995; Searby & Ewers, 1997).

It is hypothesized that training self-assessment and task-selection
skills (both via examples and practice) would result in higher self-
assessment and task selection accuracy than obtained by the
control condition (hypothesis 3a), but it is an open question as to
whether examples or practice is more effective (question 3b).
Moreover, it is hypothesized that such training leads to higher
learning outcomes attained after self-regulated learning than ob-
tained by the control condition (hypothesis 4a), but again, it is an
open question as to which of the two training types (examples or
practice) is more effective (question 4b). On the one hand, based on
findings concerning the acquisition of problem-solving skills, we
might expect example-based learning to be more effective for
enhancing accuracy and learning outcomes. For example, in learning
to use concept mapping as a learning strategy, it was found that
examples (modeling) wasmore effective thanpractice, at least when
students were asked to self-explain the examples (Hilbert & Renkl,
2009). On the other hand, in studies comparing learning from
Please cite this article in press as: Kostons, D., et al., Training self-assessm
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workedexamples and learning frompracticingwithproblemsolving,
students are generally not providedwith any information concerning
how to solve the problem. In this study, they are first explained the
rules before they have to apply them to the model’s performance.

3.1. Method

3.1.1. Participants and design
Ninety Dutch students (50 female, 40 male; age M ¼ 14.66,

SD ¼ 0.71) in their third year of Higher General Secondary Educa-
tion (the second highest level of secondary education in the
Netherlands, with a 5 year duration) participated in this experi-
ment. They were from a single school in the southern part of the
Netherlands. All participants were used to working with
computers; they had multiple lessons each week in which they
utilized computers. Students in participating classes were
randomly assigned to one of three conditions a week before the
study; however, several students were absent during the experi-
ment, resulting in unequal distribution over conditions: (1) self-
assessment and task-selection skills taught via modeling exam-
ples (Modeling; n ¼ 32); (2) self-assessment and task-selection
skills taught via practice (Practice; n ¼ 25), and no teaching of
self-assessment and task-selection skills (Control; n¼ 33). Students
had not yet received any formal education on heredity, the subject
used in the experiment.

3.1.2. Materials
3.1.2.1. Pretest and posttest. The pretest and posttest were the same
as in Experiment 1.

3.1.2.2. Mental effort rating. The same 9-point rating scalewas used
as in Experiment 1.

3.1.2.3. Self-assessment/peer-assessment. The same 6-point rating
scale was used as in Experiment 1.

3.1.2.4. Task selection. The same procedure was used as in Experi-
ment 1. During the self-regulated learning phase that was added in
Experiment 2, students could click on the task they wanted to
perform in the overview of the database (see Fig. 1) that was visible
on their computer screen and then received that task to work on.

3.1.2.5. Training conditions. The Control (i.e., no training) condition
was the same as in Experiment 1: participants observed the video
of the model performing the problem-solving task and then had to
find and fix errors in the model’s performance. The Modeling
conditionwas the same as the SAþ TS condition in Experiment 1. In
the Practice condition, participants were first explained the self-
assessment and task-selection rules that were also used by the
modeling examples, but without a concrete example. That is, con-
cerning assessment, it was explained that each of the five steps in
the problem-solving process could be right or wrong and contrib-
uted equally to the total assessment score. Concerning task selec-
tion, it was explained how mental effort and performance scores
could be combined to infer a recommended step size, which could
then be used to determine the next task by going back or pro-
gressing the recommended number of rows in the database over-
view. Then, they observed the video of the model performing the
problem-solving task, assessed the model’s performance, and
selected a new task for the model. They were reminded of the rules
immediately before each assessment and task selection moment
during the training phase.

3.1.2.6. Self-regulated learning. In this experiment, a self-regulated
learning phase was added after the training and prior to the
ent and task-selection skills: A cognitive approach to improving self-
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Table 2
Means (and SD) of pretest and posttest performance and accuracy data per
condition.

Modeling Practice Control

M (SD) M (SD) M (SD)

Pretest score (max. ¼ 25) 3.69 (3.73) 3.00 (2.92) 3.91 (3.36)
Posttest score (max. ¼ 25) 15.91 (6.42) 14.84 (5.92) 12.06 (7.07)
Learning gain (max. ¼ 25) 12.22 (6.03) 11.84 (5.44) 8.15 (6.66)
Self-assessment accuracy posttest

(lower ¼ better)
1.41 (0.78) 1.55 (0.48) 1.71 (0.68)

Self-assessment accuracy self-regulated
learning (lower ¼ better)

1.52 (1.23) 1.22 (1.15) 1.47 (0.89)

Task-selection accuracy posttest
(lower ¼ better)

4.20 (1.49) 4.87 (2.13) 4.28 (1.87)

Task-selection accuracy self-regulated
learning (lower ¼ better)

2.28 (1.60) 2.25 (1.60) 3.90 (2.67)
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posttest, in which students could perform eight practice tasks of
their own choice, in an electronic learning environment (see also
Kostons et al., 2010) consisting of aWeb applicationwith a database
connected to it that contained all learning tasks (see Fig. 1). The
environment logged participants’ answers to the problems,
responses on mental effort and self-assessment rating scales, and
task-selection choices.

In the self-regulated learning phase, participants went through
the cycle of selecting a task, performing the task, rating their
mental effort, and assessing their performance eight times. Based
on Kostons et al. (2010) amaximum of fiveminutes was allotted per
task. A visual and auditory warning was given when only one
minute was left, and the system automatically continued to the
self-assessment phase once time was up. One restriction on task
selection was implemented of which participants were informed
beforehand and were reminded of each time they went to the task-
selection screen: They needed to complete at least one conven-
tional task within a complexity level (correctly or incorrectly)
before they could proceed to a higher complexity level (cf. Corbalan
et al., 2008; Kostons et al., 2010). This rule had been implemented
for two reasons. First, this should lead students to avoid choosing
only tasks with high levels of support, but rather test themselves
whether they could perform the task without any support, as they
would have to do on the test. Second, this led to at least some
conventional tasks being performed during the self-regulated
learning phase, allowing for analyses on self-assessment and
task-selection accuracy during self-regulated learning (see data
analysis section). This rule had also been explained in the task-
selection training (i.e., in the modeling examples and practice
conditions).

3.1.3. Procedure
The experiment was run at the participants’ school in sessions of

approximately 110 min duration, with 9e20 students per session.
Participants had been randomly assigned to conditions prior to the
experiment. They first completed the pre-test, according to the
same procedure used in Experiment 1. After the pretest, partici-
pants in theModeling condition observed the four problem solving,
self-assessment and task-selection modeling examples. Partici-
pants in the Practice condition received the explanation of the
rules, observed the model solving the problem and then assessed
the model’s performance and selected a next task for the model
four times. Participants in the Control condition observed the
model solving the problem and then engaged in finding and fixing
the mistakes in the model’s demonstrated performance four times.
Then, all participants engaged in self-regulated learning in the
electronic learning environment, selecting learning tasks, per-
forming those tasks, rating their mental effort, and self-assessing
their performance eight times. Finally, participants proceeded to
the posttest, completed according to the same procedure as in
Experiment 1.

3.1.4. Data analysis
Self-assessment and task-selection accuracy on the posttest and

during the self-regulated learning phase were determined
according to the same procedure used in Experiment 1. Mean task-
selection accuracy could not be computed for 31 participants due to
missing values in either mental effort scores or task selection
choices (these participants were rather equally distributed across
conditions: Modeling: n ¼ 10, Practice: n ¼ 9, Control: n ¼ 12).
During the self-regulated learning phase, self-assessment and task-
selection accuracy was only computed for conventional problems,
because the completion problems provided support consisting of
worked-out steps, which had consequences for self-assessment
(i.e., assigning oneself a point for those steps, is not a judgment of
Please cite this article in press as: Kostons, D., et al., Training self-assessm
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whether one has correctly performed it, but of whether one is
confident that one could correctly perform it) and because of the
task-selection rule, restrictions in task selection applied as well.
Note that not all participants performed conventional problems,
and that the mean accuracy may be based on different numbers of
conventional problems for different participants.

There were no significant correlations between individual’s pre-
test scores, pre-to-posttest learning gains, self-assessment accuracy
or task-selection accuracy (all p > 0.20), indicating that these
variables were independent from each other.

3.2. Results

Means and standard deviations of pretest and posttest perfor-
mance, learning gains, self-assessment, and task-selection accuracy
per condition are provided in Table 2. ANOVAs with planned
contrasts (significance level of 0.05) were used to test our
hypotheses. Cohen’s d is provided as a measure of effect size, with
0.25, 0.50, and 0.80 corresponding to small, medium, and large
effect sizes, respectively. As in Experiment 1, some variables were
not normally distributed and therefore non-parametric tests were
also performed, which led to the same pattern of results of main
effects as the parametric tests reported here. Because both para-
metric and non-parametric analyses led to the same conclusions
with regards to H0 rejections we report the parametric data.

3.2.1. Self-assessment accuracy
In line with hypothesis 3a, an ANOVA with planned contrasts,

with condition (modeling, practice or control) as independent
variable and learning gains as dependent variable, showed that
self-assessment accuracy on the posttest was higher in the
Modeling condition than in the Control condition, t(87) ¼ 1.81,
p ¼ 0.037, one-tailed, d ¼ 0.41. In contrast to hypothesis 4a, there
was no significant difference between the Control condition and
the Practice condition, t(87) < 1, ns. In addition, the Modeling and
the Practice conditions did not differ from each other, t(87) < 1, ns
(see question 3b). There were no significant differences between
conditions in self-assessment accuracy on the conventional prob-
lems completed during the self-regulated learning phase, all
t(64) < 1, ns (hypotheses 4a and question 4b).

3.2.2. Task-selection accuracy
In contrast to hypothesis 3a, an ANOVA with planned contrasts,

with condition (modeling, practice or control) as independent vari-
able and learning gains as dependent variable, showed that there
were no significant differences between conditions in task-selection
accuracy on the posttest (all t(56) < 1, ns). However, there were
significant differences between conditions in task-selection accuracy
ent and task-selection skills: A cognitive approach to improving self-
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on the conventional problems completed during the self-regulated
learning phase. In line with our expectation (see hypothesis 3a),
accuracy in the Modeling condition was higher than in the Control
condition (t(63)¼ 2.74, p¼ 0.004, one-tailed, d¼ 0.74) and accuracy
in the Practice condition was higher than in the Control condition
(t(63) ¼ 2.52, p ¼ 0.007, one-tailed, d ¼ 0.75) during self-regulated
learning. The Modeling and the Practice conditions did not differ
from each other (t(63) < 1, ns) (question 3b).

3.2.3. Learning gains
In line with hypothesis 4a, an ANOVA with planned contrasts,

with condition (modeling, practice or control) as independent
variable and learning gains as dependent variable, showed that the
Control condition gained less knowledge than both the Modeling
condition (t(87) ¼ 2.68, p ¼ 0.005, one-tailed, d ¼ 0.64) and the
Practice condition (t(87) ¼ 2.27, p ¼ 0.013, one-tailed, d ¼ 0.61).
Regarding open question 4b, the Modeling and the Practice
conditions did not differ from each other (t(87) < 1, ns).

3.3. Discussion

This experiment showed that in line with our hypothesis 3a,
training students’ self-assessment and task-selection skills
enhanced the effectiveness of self-regulated learning in terms of
learning gains. Training via modeling and practice seemed to be
equally effective (question 3b). One would expect the increase in
learning gains in these conditions compared to the control condition
to be due to increased self-assessment and task-selection accuracy.
The results partially support this assumption, but are not unequiv-
ocal (hypothesis 4a and question 4b). Regarding self-assessment
accuracy, the modeling condition indeed outperformed the
control condition on the posttest, but the practice condition did not.
Moreover, no differences between conditions in self-assessment
accuracy during self-regulated learning were found. Regarding
task-selection accuracy, no significant differenceswere foundon the
posttest, but the modeling and practice conditions significantly
outperformed the control condition during self-regulated learning.

Compared to Experiment 1, the effects of training on self-
assessment and task-selection accuracy were much more difficult
to establish in this second study. Note that the number of tasks (i.e.,
conventional problems) on which self-assessment and task selec-
tion accuracy could be measured during the self-regulated learning
phase was rather low and differed per participant. On the posttest,
all tasks were again the same for all participants as in Experiment 1,
but each participant’s experiences during the interspersed self-
regulated learning phase were different and this may have modi-
fied the effects of the training on self-assessment and task-selection
accuracy, making potential differences that existed after training
more difficult to measure by the time the posttest took place.

4. General discussion

Our main aim was to investigate whether self-assessment and
task-selection accuracy can be increased through training and
whether such training enhances the effectiveness of self-regulated
learning in which students have control over which learning tasks
to engage in. Experiment 1 demonstrated that training consisting of
observation of human models who engage in self-assessment and
task selection improved students’ self-assessment and task-
selection skills. Experiment 2 showed that training self-
assessment and task-selection skills, either through modeling as
in Experiment 1 or by being explained the rules and then practicing
those skills by assessing the model’s performance and selecting
a new task for themodel, indeed enhanced the effectiveness of self-
regulated learning.
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Previous research on improving self-regulated learning in
hypermedia environments has shown that training can improve
students’ application of self-regulation activities such as moni-
toring or planning during task performance and that this can
increase their learning outcomes (e.g., Azevedo & Cromley, 2004).
Our study extends that research by focusing on training self-
assessment and task-selection skills for self-regulated learning
situations in which learners have control over which learning tasks
to engage in. Prior research on modeling examples also suggested
that modeling can improve certain self-regulatory processes
(Kitsantas et al., 2000; Zimmerman & Kitsantas, 2002). However,
these studies did not investigate whether processes important for
self-regulated learning can be taught via modeling, that is, in those
studies, the models did not explicitly show students how to effec-
tively engage in processes important for self-regulated learning.
Our studies extend this research by showing that modeling self-
assessment and task-selection skills can lead to the improvement
of those skills, and that this affects the effectiveness of self-
regulated learning.

The training we implemented was relatively simple and focused
primarily on teaching students the kind of rules for self-assessment
and task selection that are also implemented in e-learning systems
to personalize instruction (e.g., Camp et al., 2001; Corbalan et al.,
2008; Kalyuga, 2006; Salden et al., 2004). Even though the exact
content of the rules might differ between tasks and domains,
especially for self-assessment (i.e., the scale on which performance
is assessed, or how performance is assessed), the underlying
principles that the task-selection rules convey, such as “when
selecting a task, do not only regard your performance, but also the
amount of effort you invested” and “if your performance was high
and your invested mental effort was low, you can select a more
complex task” are likely to be effective across tasks and domains.
An interesting question for future research therefore, is whether
acquired self-assessment and task-selection skills can transfer to
other tasks in the same domain or even to other domains.

Another interesting question is whether training of self-
assessment skills positively affects monitoring during task perfor-
mance. That is, if students know what is important for assessing
their performance, their monitoringmight becomemore focused. It
will probably still require some cognitive capacity that cannot be
devoted to the learning task, but when monitoring is more focused
this may be less detrimental for learning. It might even foster
learning, as students might be able to adjust their performance in
response to evaluations of certain steps made during task
performance.

Finally, given the reported relationship between prior knowl-
edge and accuracy of self-assessment, an interesting question
would be whether students with higher levels of prior knowledge
than the novices who participated in our studies would still benefit
from training self-assessment and task-selection skills, or whether
such training would be unnecessary or even harmful for them (i.e.,
an ‘expertise reversal effect’ might occur; Kalyuga, 2007; Kalyuga,
Ayres, Chandler, & Sweller, 2003).

A limitation of the studies presented here that was already
mentioned and discussed above, is that in Experiment 2 we did not
manage to fully replicate the effects on accuracy that we found in
Experiment 1. Another limitation is that this study focused solely
on cognitive factors. It should be noted that the standard deviations
on learning gains were quite large in all conditions. So even though
conditions with training produced higher learning gains on average
than the control condition, differences in learning gains within
conditions could potentially be explained by differences in
students’ motivation or goal orientation (e.g., De Bilde,
Vansteenkiste, & Lens, 2011; Kolovelonis, Goudas, & Dermitzaki,
2011; Pintrich, 2000; Schunk, 1990). Combining measures of
ent and task-selection skills: A cognitive approach to improving self-
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cognitive and affective variables in future studies might shed light
on this issue. Furthermore, students did not receive any feedback
on whether their self-assessments or task-selections were correct
(cf. Butler & Winne, 1995; Kicken, Brand-Gruwel, Van Merriënboer,
& Slot, 2009). Such feedback might further improve learning from
examples (e.g., Stark, Kopp, & Fischer, 2011). Finally, this study did
not assess longer-term effects of training self-assessment and task-
selection skills on the effectiveness of self-regulated learning.
Future research should investigate whether the effects of training
fade over time and if so, at what intervals the training should be
repeated.

Despite these limitations, our studies resulted in an important
finding for educational practice, showing that a relatively simple
training intervention aimed at improvement of self-assessment and
task-selection skills can significantly increase the amount of knowl-
edge or skills students gain from self-regulated learning in which
learners can choose their learning tasks from a large set of tasks.

Appendix 1. Example of task at complexity level 2

Description

The eye color in humans is dependant on a gene that expresses
itself dominantly as brown (B) and recessively as blue (b). Two
parents produce an offspring. One of these parents has brown eyes
and is heterozygote for this property. The other parent has blue
eyes and is homozygote for this property. What genotypes could
the offspring have?

Step 1: Translate to genotypes

Parent 1: Brown eyes. Brown is dominant so at least one capital
B-allele. Heterozygote, meaning different alleles. Implies genotype
of capital B and small b: Bb.

Parent 2: Blue eyes. Blue is recessive, so no capital B’s allowed.
Implies genotype of two small b’s: bb.

Step 2: Put genotypes in hereditary tree

Step 3: Decide number of Punnett squares

Deductive reasoning, so 1 square.

Step 4: Create Punnett square(s)

b b
Please cite this article in press a
regulated learning, Learning and
s: Kostons, D., et al., Training self
Instruction (2011), doi:10.1016/
B
 Bb
 Bb

b
 bb
 bb
Step 5: Extract final answer

Answers: Bb and bb.
-assessm
j.learnins
Appendix 2. Posttest (translated from Dutch)

Question 1 (complexity level 2)

Some people have a V-shape in their hair on top of their fore-
head, a so-called Widow’s Peak. This shape is caused by a gene that
expresses itself in its dominant form, and not in its recessive form.
Two parents who both have a V-shape in their hair and are both
heterozygote for this trait produce offspring. What are the possible
genotypes for this offspring?

Question 2 (complexity level 3)

The shape of person’s earlobe is determined by a gene, which in
its dominant form expresses itself as an arch, and in its recessive
form expresses itself as continuous. A parent with an arch, who is
heterozygote for that trait, manages to produce a child that is
homozygote for the trait and has continuous earlobes. What are the
possible genotypes of the other parent?

Question 3 (complexity level 5)

Cystic Fibrosis (CF) is caused by a gene that in its recessive form
expresses itself, but in its dominant form does not. Two parents
produce offspring. One parent has CF, but the other parent’s
genotype is unknown. The offspring they produced also has CF. This
offspring, together with a partner without CF who is homozygote
for the trait, also produce offspring, whose genotype is unknown.
What are the possible genotypes of the unknown parent and the
unknown offspring?

Question 4 (complexity level 1)

A guinea pig’s fur color is determined by a gene, which
expresses itself as black in its dominant form and white in its
recessive form. Two guinea pigs, who are both black and homo-
zygote for that trait, produce offspring. What are the possible
genotypes for this offspring?

Question 5 (complexity level 4)

The color of peas depends on a gene, which expresses itself as
yellow in its dominant form and as green in its recessive form. Two
peaplants, which are both yellow and heterozygote for that trait,
produce offspring. No further information about that offspring is
available. This offspring, with another peaplant that is green,
manages to produce offspring that is yellow and heterozygote for
that trait. What are the possible genotypes for the unknown pea-
plant?
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