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1 INTRODUCTION

CONTEXT Many aspects of modern life depend on, and are controlled by, software. When you wake up, the alarm

clock waking you is controlled by software. During the day, almost every device one uses contains software, like a

fridge [Tro15], car, television, elevator, and coffee machine. Because we heavily depend on these devices and since

they are everywhere around us, it is important to know the correctness and energy conditions required to function

properly. This is strengthened by the fact that software is essential to let our contemporary society function. From

tax returns, online theft reports, applications for benefits, to construction work and of course communications, all is

handled by software. At this summerschool, methods to analyse energy consumption of software are discussed.

photo 1 Measuring pollution of a Volkswagen Golf 2.0.

Photo: Patrick Pleul/AFP/Getty Images.

As traditionallymany savings did occur in the hardware side

of a computer, energy consumption is a blind spot when

developing software. Each next hardware generation con-

sumed less energy for performing the same amount of work.

However, recently this development has lost its pace. At the

same time, it becomes more and more clear that software

has a huge impact on the behaviour and the properties of

devices it runs on. A recent example of software influencing

the working of a device is the Volkswagen scandal, where

Volkswagen used software to detect if the car was being tested, and if so made the diesel motor exhaust

less toxic gases (see photo 1). In [OZH16] it is calculated that 44,000 years of human life are lost in Europe

because of the fraud, which lasted at least 6 years. Another example are fridges from Panasonic, which

could detect if a test was going on and suppressed energy intensive defrost cycles during this test. Al-

though these are negative examples, it does make clear that the software is in control of the device and its

(energy) behaviour.

Although it is evident that software is in control, there is almost no time dedicated in most computer

science curricula to energy efficiency of software. This is peculiar since energy is important to modern

(software) industry. For years data centers are located at places where the energy is cheap, and since the

rise of the smartphone more software engineers recognise that in order to get good user reviews, their

software should not obliterate the battery charge of the user’s phone. As a result, most students never

learn to produce energy efficient code. Software engineers have trouble assessing howmuch energy will

be consumed by their software on a target device, especially when the software is run on a multitude of

different systems. With the advent of the internet of things, where software is increasingly embedded

in our daily life, it is increasingly important that the software industry as a whole becomes aware of their

energy footprint, and methods are developed to reduce this footprint.
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Furthermore the combination of many individual negative effects can also affect our society at large. Al-

though this effect is less direct, it is not less essential. If devices that are present in large quantities in our

society all exhibit the same negative behaviour, like incurring needlessly a too high energy consumption,

it can impact public utilities and our economy. Governments increasingly become aware of this societal

effect, as indicated by the new laws in the European Union issuing ecodesign requirements for all kind of

devices, aiming among others tomake themmore energy efficient. Examples of product categories having

ecodesign requirements are vacuum cleaners, electrical motors, lightning, heaters, cooking appliances

[EU-1], televisions [EU-2] and coffee machines [EU-3]. Even requirements leading to relative small improve-

ments in energy efficiency can yield large results at scale, even for devices one typically would not expect

to be able to save electricity significantly. Although not necessarily running software, a vacuum cleaner

can be such a device. By reducing the energy consumption of vacuum cleaners alone, by estimation of the

European Union itself [EU-4], 20 TWh of electricity can be saved in 2020. To put that number into context,

the Netherlands used 96.8 TWh of electrical energy in 2013 [EU-5].

During the course of the past years, worldwide electricity generation continued to increase, from 6,131TWh

in 1973 to 23,322 TWh in 2013 [IEA15a], representing a growth of 280%. The population growth from

3,909,722,120 to 7,181,715,139 people during the same periodwas 84% [UN16], thereforewe are usingmore and

more energy per capita. Most of the growth in energy generation per capita is attributed to China (97%), and

the regional attribution of energy generation shows that Africa, Asia and theMiddle East are taking a larger

share of the worldwide production. The average energy consumption per capita is distributed unevenly,

according to [IEA15a] in 2013 the United States consumed 12,987 kWh/capita of electricity, Germany 7,022

kWh/capita, the Netherlands 6,823 kWh/capita, Spain 5,404 kWh/capita, and Italy 5,124 kWh/capita. But for

example only 783 kWh/capita in India and 3778 kWh/capita in China are consumed. As a society we have

already difficulty with meeting our energy appetite, this will only increase if people in countries as China
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figure 2 Growth in world electricity demand and related CO2 emissions since 1990 (left) and related CO2 emis-

sions by region (right). Source: figure 2 in [IEA15b].
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and India are consuming the same amount of energy as in the United States and Europe. According to

[IEA15b], the outlook appears the same, with a significant shift in regional CO2 emissions, as can be found

in figure 2.

This context is the basis for the argument of small savings in many devices yielding big societal and

environmental impact, devices of which a significant part is running software. We consider a low energy

consumption of a device a condition of the software running on the device, as this is required for these

devices to be usable in a society at large scale.

1.1 Techniques

A common method the aspects share is resource analysis. The method starts with identifying a certain

resource, and continue with analysing all the usages of this particular resource. In this lecture the resource

studied is energy, however other resources can also be studied, such asmemory or time. This time resource

is needed in order to analyse energy, which we will discuss only briefly, as this will be discussed in other

lectures at this summerschool. Resource analysis is a static analysis method, meaning the program is

analysed without running it. This has a number of advantages as opposed to measuring in a test setup.

During the development phase, without actually building the product, the energy usage can be predicted.

If the product is actually build, benchmarking energy usage can be expensive, both in terms of energy and

cost. This holds especially for large industrial applications, e.g. a whole factory or a large communications

infrastructure.

Another common theme is the transformation of programs. By transforming the program into another one

analysing the program becomes feasible. This transformed program abstracts from all kinds of details, and

is equivalent for one particular property. This property can be memory usage or energy consumption.

Another method is, instead of making an transformation, to over approximate a certain property. This is a

powerful techniques but with its drawbacks. On the one side, if using sound over approximations, allows

one derive properties that hold always regardless of the input, i.e. a maximum. These are most of the time

symbolic: if the result depend on an input variable, the symbol signifying the input occurs in the result. In

order for the results to be correct, stronger assumptions on the input and/or the structure of the program

are needed. Another drawback is, as the name implies, imprecision: the derived approximations can be a

significant factor worse than the real maximum.

In all these techniques assumptions play an important role. Stronger assumptions leads to easier to de-

rive properties and higher quality properties. It is therefore key to clearly identify the properties that are

important to a certain case, and make a balanced consideration of which techniques to apply.
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1.2 Outline

Lately, research in the relation between energy consumption and software gains traction, with numer-

ous different approaches and views on the subject (see related work later on). We discuss two methods

for analysing energy on source code level, one based on a Hoare logic and another based on program

transformations.

The first method is an alternative method to analyse programs written in our demonstration language ECA

is proposed, using program transformations. This language has explicit hardware interaction embedded

in the language, enabling easier analysis of the interactions. The program transformation is based on

dependent types. The approach is hardware parametric, it works for any external hardware device. Several

implementations of hardware components can be easily exchanged. This approach has a number of

advantages, among others reduced limitations on the modelling of components. This method derives a

concrete precise result.

The second method deduces an over approximated symbolic energy consumption bound from programs

written in the ECA language. The over approximation is based on a Hoare logic, which is applied on the

source code level. Due to the nature of over approximations, several extra assumptions on the models are

required. The approach is also a hardware parametric The Hoare logic approach suffers both from lack of

compositionality and from significant overshoot in the derived bounds.

We focus on software that controls energy consuming hardware, but not necessarily the processor itself

as a processor features many implicit behaviour affecting the energy consumption. Examples of control

software that can be analysed with the methods in these chapters are control software for thermostats,

industrial equipment, environment control systems, and household appliances amongst others.
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2 APPLICATIONS

CONTENT

— defining the scope of the presented approaches.

— describing potential use cases.

The foreseen application area of the proposed analysis is predicting the energy consumption of control

systems, in which software controls a number of peripherals. This includes control systems in factories,

cars, airplanes, smart-home applications, etc. Examples of hardware components range from a disk drive

or sound card, to heaters, engines, motors and urban lighting. The proposed analysis can predict the energy

consumption of multiple algorithms and/or different hardware configurations. The choice of algorithm or

configuration may depend on the expected workload. This makes the proposed technique useful for both

programmers and operators.

The used hardware models can be abstracted, making clear the relative differences between component-

methods and component-states. This makes the proposed approach still applicable even when no final

hardware component is available for basing the hardware model on, or this model is not yet created. We

observe that many decisions are based on relative properties between systems.

In this publication, two manners of deriving energy consumption are used: a type system deriving precise

types, and an over approximating Hoare logic. Both work in a syntax-directed manner. Soundness and

completeness can be proven by induction on the syntax structure of the program. This proof for the Hoare

calculus can be found in [Par+13], and can be repeated for the type system derive precise types, but is more

straightforward due to the absence of approximations.

There are certain properties hardware models must satisfy. Foremost, the models are discrete. Implicit

state changes by hardware components cannot be expressed. Energy consumption that gradually in-

creases or decreases over time can therefore not be modelled directly. However, discrete approximations

may be used.

The quality of the derived energy expressions is directly related to the quality of the used hardwaremodels.

Depending on the goal, it is possible to usemultiplemodels for one and the same hardware component. For

instance, if the hardware model is constructed as a worst-case model, the type system will produce worst-

case information. Similarly one can use average-case models to derive average case information. For the

over approximating Hoare logic, worst case hardware models must be used to derive sound bounds.
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3 HYBRID MODELLING:

LANGUAGE AND SEMANTICS

CONTENT

— defining language that we will analyse.

— define regular semantic of the language.

— define hardware models that are used.

— define energy enhanced semantics of the language.

Modern electronic systems typically consist of both hardware and software. As we aim to analyse energy

consumption of such hybrid systems, we consider hardware and software in a single modelling framework.

Software plays a central role, controlling various hardware components. Our analysis works on a simple,

special purpose language, called ECA. This language has a special construct for calling functions on hard-

ware components. It is assumed that models exist for all the used hardware components, which model

the energy consumption characteristics of these components, as well as the state changes induced by and

return values of component function calls.

The ECA language is described in section 3.1. Modelling of hardware components is discussed in section 3.2.

Energy-aware semantics for ECA are discussed in section 3.4.

3.1 ECA language

Thegrammar for theECA language is defined in listing 3. Wepresume there is away to differentiate between

identifiers that represents variables 〈var〉, function names 〈function-name〉, components 〈component〉, and
constants 〈const〉.

The only supported type in the ECA language is a signed integer. There are no explicit booleans. The

value 0 is handled as false, any other value is handled as true. The absence of global variables and the

by-value passing of variables to functions imply that functions do not have side-effects on the program

state. Functions are statically scoped. Recursion is supported in the language (however not in all analysis

methods).

The language has an explicit construct for operations on hardware components (e.g. memory, storage or

network devices). This allows us to reason about components in a straight-forward manner. Functions on

components have a single parameter and always return a value. The notation C. f refers to a function f of

a component C.

3: Hybrid modelling: language and semantics 7



〈fun-def〉 ::= ‘function’ 〈function-name〉 ‘(’ 〈var〉 ‘)’ ‘begin’ 〈expr〉 ‘end’

〈bin-op〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘>’ | ‘>=’ | ‘==’ | ‘!=’ | ‘<=’ | ‘<’ | ‘and’ | ‘or’

〈expr〉 ::= 〈const〉 | 〈input〉 | 〈var〉
| 〈var〉 ‘:=’ 〈expr〉 | 〈expr〉 〈bin-op〉 〈expr〉
| 〈component〉 ‘.’ 〈function-name〉 ‘(’ 〈expr〉 ‘)’
| 〈function-name〉 ‘(’ 〈expr〉 ‘)’
| 〈stmt〉 ‘,’ 〈expr〉

〈stmt〉 ::= ‘skip’ | 〈stmt〉 ‘;’ 〈stmt〉 | 〈expr〉
| ‘if’ 〈expr〉 ‘then’ 〈stmt〉 ‘else’ 〈stmt〉 ‘end’
| ‘repeat’ 〈expr〉 ‘begin’ 〈stmt〉 ‘end’
| ‘while’ ‘[’ 〈bound〉 ‘]’ 〈expr〉 ‘do’ 〈stmt〉 ‘end’
| 〈fun-def〉 〈stmt〉

listing 3 Grammar for the ECA language.

The language supports a repeat construct, whichmakes the bound an obvious part of the loop and removes

the need for evaluating the loop guard with every iteration (as with a while). The repeat is used for presen-

tation purposes, without loss of generality, since the more commonly used while has the same expressive

power.

A typical (predictive recursive descent) parser of this language is in the LL(2) class of parsers, with a

small second pass. This second pass is needed, to avoid a possible infinite lookahead that is needed to

differentiate between expressions and statements. During the first phase expressions and statements are

combined as the same construct. The small post processing step differentiates between the two. This way

the language can still be efficiently parsed in a simple manner.

3.2 Hardware component modelling

In order to reason about hybrid systems, we need to model hardware components. A component model

consists of a component state and a set of component functionswhich operate on the component state. A

component model must capture the behaviour of the hardware component with respect to energy con-

sumption. Component models are used to derive dependent types signifying the energy consumption of

themodelled hybrid system. Themodel can be based onmeasurements or detailed hardware specifications.

Alternatively, a generic component model might be used (e.g. for a generic hard disk drive).

A component state is a collection of variables of any type. They can signify e.g. that the component is on,

off, or in stand-by. A component function is modelled by two functions: rvf which produces the return

value, and δ f which updates the (component) state. A component can have multiple component functions.

Any state change in components can only occur during a component function call and therefore is made

explicit in the source code.

3: Hybrid modelling: language and semantics8



Tomodel energy consumption, each component has a power draw, which depends on the component state.

The function φ in the component model maps the component state to a power draw. The result of this

function is used to calculate time-dependent energy consumption.

3.3 Regular semantics

We use a fairly standard semantics for our ECA language, to which we add energy consumption semantics

later on. The semantics are listed in figure 4. We explain the used notation below.

The function environment ∆s (s for semantics) contains both the aforementioned component function

signatures (for now a pair of a state transition function δ and a return value function rv) and function

definitions (pairs of function body e and parameter x). Component states are collected in the component

environment Γ. We use the following notation for substitution: σ[x ← a]. With [x 7→ a], we construct a

new environment in which x has the value a. We differentiate two kinds of reductions. Expressions reduce

from a triple of the expression, program state σ and component state environment Γ, to a triple of a value,

a new program state and a new component state environment, with the
e−→ operator. As statements do

not result in a value, they reduce from a triple of the statement, σ, and Γ to a pair of a new program state

and a new component state environment, with the
s−→ operator.

There are three rules for the repeat loop. The one labelled esRepeat calculates the value of expression e, i.e.

the number of iterations for the loop. The esRepeatLoop rule then handles each iteration, until the number

of remaining iterations is 0. At that point, the evaluation of the loop is ended with the esRepeatBase rule.

To differentiate it from the normal evaluation rules we use a tuple of the statement to be evaluated and the

number of times the statement should be evaluated.

3: Hybrid modelling: language and semantics 9



(sInput)
∆s ` 〈i, σ, Γ〉 e−→ 〈I(i), σ, Γ〉

(sConst)
∆s ` 〈c, σ, Γ〉 e−→ 〈Z(c), σ, Γ〉

(sVar)
∆s ` 〈x, σ, Γ〉 e−→ 〈σ(x), σ, Γ〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′〉 ∆s ` 〈e2, σ′, Γ′〉 e−→ 〈m, σ′′, Γ′′〉
(sBinOp)

∆s ` 〈e1 � e2, σ, Γ〉 e−→ 〈n � m, σ′′, Γ′′〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′〉
(sAssign)

∆s ` 〈x := e1, σ, Γ〉 e−→ 〈n, σ′[x ← n], Γ′〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈a, σ′, Γ′〉
(sCmpF)

∆s, C. f =(δ f , rvf ) ` 〈C. f (e1), σ, Γ〉 e−→ 〈rvf (Γ′(C), a), σ′, Γ′[C ← δ f (Γ′(C), a)]〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈a, σ′, Γ′〉 ∆s ` 〈e f , [x 7→ a], Γ′〉 e−→ 〈n, σ′′, Γ′′〉
(sCallF)

∆s, f =(e f , x) ` 〈 f (e1), σ, Γ〉 e−→ 〈n, σ′, Γ′′〉

∆s ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′〉 ∆s ` 〈e1, σ′, Γ′〉 e−→ 〈n, σ′′, Γ′′〉
(sExprConcat)

∆s ` 〈S1 ,e1, σ, Γ〉 e−→ 〈n, σ′′, Γ′′〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′〉
(sExprAsStmt)

∆s ` 〈e1, σ, Γ〉 s−→ 〈σ′, Γ′〉
(sSkip)

∆s ` 〈skip, σ, Γ〉 s−→ 〈σ, Γ〉

∆s ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′〉 ∆s ` 〈S2, σ′, Γ′〉 s−→ 〈σ′′, Γ′′〉
(sStmtConcat)

∆s ` 〈S1;S2, σ, Γ〉 s−→ 〈σ′′, Γ′′〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈0, σ′, Γ′〉 ∆s ` 〈S2, σ′, Γ′〉 s−→ 〈σ′′, Γ′′〉
(sIf-False)

∆s ` 〈if e1 then S1 else S2 end, σ, Γ〉 s−→ 〈σ′′, Γ′′〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′〉 n 6= 0 ∆s ` 〈S1, σ′, Γ′〉 s−→ 〈σ′′, Γ′′〉
(sIf-True)

∆s ` 〈if e1 then S1 else S2 end, σ, Γ〉 s−→ 〈σ′′, Γ′′〉
n≤0

(sRepeatBase)
∆s ` 〈(S1, n), σ, Γ〉 s−→ 〈σ, Γ〉

n>0 ∆s ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′〉 ∆s ` 〈(S1, n−1), σ′, Γ′〉 s−→ 〈σ′′, Γ′′〉
(sRepeatLoop)

∆s ` 〈(S1, n), σ, Γ〉 s−→ 〈σ′′, Γ′′〉

∆s ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′〉 ∆s ` 〈(S1, n), σ′, Γ′〉 s−→ 〈σ′′, Γ′′〉
(sRepeat)

∆s ` 〈repeat e1 begin S1 end, σ, Γ〉 s−→ 〈σ′′, Γ′′〉

∆s, f =(e1, x) ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′〉
(sFuncDef)

∆s ` 〈function f (x) begin e1 end S1, σ, Γ〉 s−→ 〈σ′, Γ′〉

figure 4 Regular semantics. Note that i stands for an 〈input〉 term, c for a 〈const〉 term, x for a 〈var〉 term, e for
a 〈expr〉 term, S for a 〈stmt〉 term,� for a 〈bin-op〉, f for a 〈function-name〉, and C for a 〈component〉.



3.4 Energy-aware semantics

The regular semantics are extended to include energy consumed by the components while running the

program. To this end both the reduction functions
e−→ and

s−→ are extended so they also return the energy

consumed. The full energy-aware semantics are given in figure 5.

Components consume energy in two distinct ways. A component function might directly induce a time-

independent energy consumption. Apart from that, it can change the state of the component, affecting

its time-dependent energy consumption. To be able to calculate time-dependent consumption, we need a

timing analysis. Depending on your application and desired precision, aWorst-Case Execution Time (WCET)

can be integrated, possible in an external fashion. However, we keep it simple for now. Each construct in

the language therefore has an associated execution time, for instance tif. Every component function f has

a constant time consumption tf that is part of its function signature, along with δ f and rvf , as described in

section 3.2. The pair stored in ∆es (es for energy semantics) for each component function f is extended to

also contain the execution time tf , and an incidental energy consumption Ef .

As our systemallows for a fixednumber of components, knownbefore the analysis is performed, we assume

a global function Φ is present. This Φ sums the power draw for each known component, by applying the

component power draw function φ to the component state as contained in Γ.
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(esInput)
∆es; Φ ` 〈i, σ, Γ〉 e−→ 〈I(i), σ, Γ, Φ(Γ) · tinput〉

(esConst)
∆es; Φ ` 〈c, σ, Γ〉 e−→ 〈Z(c), σ, Γ, Φ(Γ) · tconst〉

(esVar)
∆es; Φ ` 〈x, σ, Γ〉 e−→ 〈σ(x), σ, Γ, Φ(Γ) · tvar〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′, E′〉 ∆es; Φ ` 〈e2, σ′, Γ′〉 e−→ 〈m, σ′′, Γ′′, E′′〉
(esBinOp)

∆es; Φ ` 〈e1 � e2, σ, Γ〉 e−→ 〈n � m, σ′′, Γ′′, E′ + E′′ + Φ(Γ′′) · t�〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′, E′〉
(esAssign)

∆es; Φ ` 〈x := e1, σ, Γ〉 e−→ 〈n, σ′[x ← n], Γ′, E′ + Φ(Γ′) · tassign〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈a, σ′, Γ′, E′〉
(esCmpF)

∆es, C. f =(δ f , rvf , tf , Ef ); Φ ` 〈C. f (e1), σ, Γ〉 e−→ 〈rvf (Γ′(C), a), σ′, Γ′[C ← δ f (Γ′(C), a)], E′ + Φ(Γ′) · tf + Ef 〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈a, σ′, Γ′, E′〉 ∆es; Φ ` 〈e f , [x 7→ a], Γ′〉 e−→ 〈n, σ′′, Γ′′, E′′〉
(esCallF)

∆es, f =(e f , x) ` 〈 f (e1), σ, Γ〉 e−→ 〈n, σ′, Γ′′, E′ + E′′〉

∆es; Φ ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′, E′〉 ∆es; Φ ` 〈e1, σ′, Γ′〉 e−→ 〈n, σ′′, Γ′′, E′′〉
(esExprConcat)

∆es; Φ ` 〈S1 ,e1, σ, Γ〉 e−→ 〈n, σ′′, Γ′′, E′ + E′′〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′, E′〉
(esExprAsStmt)

∆es; Φ ` 〈e1, σ, Γ〉 s−→ 〈σ′, Γ′, E′〉
(esSkip)

∆es; Φ ` 〈skip, σ, Γ〉 s−→ 〈σ, Γ, 0〉

∆es; Φ ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′, E′〉 ∆es; Φ ` 〈S2, σ′, Γ′〉 s−→ 〈σ′′, Γ′′, E′′〉
(esStmtConcat)

∆es; Φ ` 〈S1;S2, σ, Γ〉 s−→ 〈σ′′, Γ′′, E′ + E′′〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈0, σ′, Γ′, E′〉 ∆es; Φ ` 〈S2, σ′, Γ′〉 s−→ 〈σ′′, Γ′′, E′′〉
(esIf-False)

∆es; Φ ` 〈if e1 then S1 else S2 end, σ, Γ〉 s−→ 〈σ′′, Γ′′, E′ + Φ(Γ′) · tif + E′′〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′, E′〉 n 6= 0 ∆es; Φ ` 〈S1, σ′, Γ′〉 s−→ 〈σ′′, Γ′′, E′′〉
(esIf-True)

∆es; Φ ` 〈if e1 then S1 else S2 end, σ, Γ〉 s−→ 〈σ′′, Γ′′, E′ + Φ(Γ′) · tif + E′′〉
n≤0

(esRepeatBase)
∆es; Φ ` 〈(S1, n), σ, Γ〉 s−→ 〈σ, Γ, 0〉

n>0 ∆es; Φ ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′, E′〉 ∆es; Φ ` 〈(S1, n−1), σ′, Γ′〉 s−→ 〈σ′′, Γ′′, E′′〉
(esRepeatLoop)

∆es; Φ ` 〈(S1, n), σ, Γ〉 s−→ 〈σ′′, Γ′′, E′ + E′′〉

∆es; Φ ` 〈e1, σ, Γ〉 e−→ 〈n, σ′, Γ′, E′〉 ∆es; Φ ` 〈(S1, n), σ′, Γ′〉 s−→ 〈σ′′, Γ′′, E′′〉
(esRepeat)

∆es; Φ ` 〈repeat e1 begin S1 end, σ, Γ〉 s−→ 〈σ′′, Γ′′, E′ + E′′〉

∆es, f =(e1, x) ` 〈S1, σ, Γ〉 s−→ 〈σ′, Γ′, E′〉
(esFuncDef)

∆es; Φ ` 〈function f (x) begin e1 end S1, σ, Γ〉 s−→ 〈σ′, Γ′, E′〉

figure 5 Energy-aware semantics. Note that i stands for an 〈input〉 term, c for a 〈const〉 term, x for a 〈var〉
term, e for a 〈expr〉 term, S for a 〈stmt〉 term, � for a 〈bin-op〉, f for a 〈function-name〉, and C for a

〈component〉.



4 PRECISE WITH A PROGRAM

TRANSFORMATION

CONTENT

— define basic program transformation, deriving expressions signifying how an input state is modified.

— if executed on a concrete input, the derived expressions yield a concrete energy consumption (and output state).

— introduces higher order combinator operators to combine derived expressions.

— these expressions in itself can be viewed as a symbolic expression.

— define energy aware program transformation, deriving expressions if executed result in the energy consumed

4.1 Basic program transformation

Before we can introduce a dependent type system that can be used to derive energy consumption expres-

sions of an ECA program, we need to define a standard dependent type system to reason about variable

values. We separately introduce this for presentation purposes.

Note that, instead of direct expressions over inputs, we derive functions that calculate a value based on

values of the input. This allows us to combine these functions using function composition and to reuse

them as signatures for methods and parts of the code.

We will start with a series of definitions. A program state environment called PState is a function from a

variable identifier to a value, i.e. PState : Var 7→ Value. Values are of type Z, like the data type in ECA. A

component state CState is collection of states of components that the component function can work on.

A value function is a function that, given a (program and component) state, will yield a concrete value, i.e.

its signature is PState×CState → Value. A state update function is a function from PState×CState to

PState×CState. Such a function expresses changes to the state, caused by the execution of statements

or expressions.

To make the typing rules more clear, we explain a number of rules in more detail. The full typing rules can

be found in figure 6. We will start with the variable access rule:

(btVar)
∆v ` x : 〈 lookupx , id 〉

All rules for evaluation of an expression return a tuple of a function returning the value of the expression

when evaluated and a function that modifies the program state and component state. The former one

captures the value, i.e. it is a state value function. The latter one captures the effect, i.e. it is a state update
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(btConst)
∆v ` c : 〈 constN (c) , id 〉

(btVar)
∆v ` x : 〈 lookupx , id 〉

∆v ` e1 : 〈V1, Σ1〉 ∆v ` e2 : 〈V2, Σ2〉
(btBinOp)

∆v ` e1 � e2 : 〈V1 � (Σ1 >>> V2), Σ1 >>> Σ2〉

∆v ` e : 〈V, Σ〉
(btAssign)

∆v ` x := e : 〈V, Σ >>> assignx(V)〉

∆v ` e : 〈Vex , Σex〉
(btCmp)

∆v, C. f = (xf , Vf , Σf ) `
C. f (e) : 〈[xf 7→ Vex , Σex ] >>> Vf , split(Σex , [xf 7→ Vex , Σex ] >>> Σf )〉

∆v, f =(xf , Vf , Σf ) ` e : 〈Vex , Σex〉
(btCall)

∆v, f =(xf , Vf , Σf ) `
f (e) : 〈[xf 7→ Vex , Σex ] >>> subst(Vf , recV( f )), split(Σex , [xf 7→ Vex , Σex ] >>> subst(Σf , recΣ( f )))〉

∆v, f =(xf ) ` e : 〈Vex , Σex〉
(btRec)

∆v, f =(xf ) `
f (e) : 〈[xf 7→ Vex , Σex ] >>> recV( f ), split(Σex , [xf 7→ Vex , Σex ] >>> recΣ( f ))〉

∆v ` S : Σst ∆v ` e : 〈Vex , Σex〉
(btExprConcat)

∆v ` S,e : 〈Σst >>> Vex , Σst >>> Σex〉

∆v ` e : 〈V, Σ〉
(btExprAsStmt)

∆v ` e : Σ
(btSkip)

∆v ` skip : id

∆v ` S1 : Σ1 ∆v ` S2 : Σ2
(btStmtConcat)

∆v ` S1 ;S2 : Σ1 >>> Σ2

∆v ` e : 〈Vex , Σex〉 ∆v ` St : Σt ∆v ` S f : Σ f
(btIf)

∆v ` if e then St else S f end : if(Vex , Σex >>> Σt, Σex >>> Σ f )

∆v ` e : 〈Vex , Σex〉 ∆v ` S : Σst
(btRepeat)

∆v ` repeat e begin S end : repeatv(Vex , Σex , Σst)

∆v, f =(x) ` e : 〈Vex , Σex〉 ∆v, f =(x, Vex , Σex) ` S : Σst
(btFuncDef)

∆v ` function f (x) begin e end S : Σst

figure 6 Basic dependent type system. For expressions it yields a tuple of a value function and a state update

function. For statements the type system only derives a state update function. Note that c stands for
a 〈const〉 term, x for a 〈var〉 term, e for a 〈expr〉 term, S for a 〈stmt〉 term, � for a 〈bin-op〉, f for a

〈function-name〉, and C for a 〈component〉.



function. To access a variable, we return the lookup function (defined below), which is parametrised by the

variable that is returned. Variable access does not affect the state, hence for that part the identity function

id is returned.

The lookup function that the btVar rule depends on is defined as follows:

lookupx : PState×CState→ Value

lookupx(ps, cs) = ps(x)

Likewise we need to define a function for the btConst rule, dealing with constants:

constx : PState×CState→ Value

constx(ps, cs) = x

Before we can continue we need to introduce the>>> operator. We can compose state update functions

with the >>> operator. Note that the composition is reversed with respect to standard mathematical

function composition, in order to maintain the order of program execution. For now, T is PState×CState.

The >>> operator can be interpreted as: first apply the effect of the left operand, then execute the right

operand on the resulting state. The>>> operator is defined as:

>>>: (PState×CState→ PState×CState)× (PState×CState→ T)

→ (PState×CState→ T)

(A >>> B)(ps, cs) = B(ps′, cs′) where (ps′, cs′) = A(ps, cs)

Moving on, we can explain the assignment rule below, which assigns a value expressed by expression e

to variable x. As an assignment does not modify the value of the expression, the part capturing the value

is propagated from the rule deriving the type of x. More interesting is the effect that captures the state

change when evaluating the rule. This consists of first applying the state change Σv of evaluating the

expression e and thereafter replacing the variable x with the result of e (as done by the assign function,

defined below). This effect is reached with the>>> operator.

∆v ` e : 〈V, Σv〉
(btAssign)

∆v ` x := e : 〈V, Σv >>> assignx(V)〉

The operator for assigning a new value to a program variable in the type environment:

assignx : (PState×CState→ Value)→ (PState×CState→ PState×CState)

assignx(V)(ps, cs) = (ps[x 7→ V(ps, cs)], cs)
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In order to support binary operations we need to define for� ∈ {+,−,×,÷, . . .} a higher order operator
�. It evaluates the two arguments and combines the results using�. For now, T is Value.

� : (PState×CState→ T)× (PState×CState→ T)

→ (PState×CState→ T)

(A � B)(ps, cs) = A(ps, cs)� B(ps, cs)

The binary operation rule cannowbe introduced. The pattern used in the rule reoccursmultiple times if two

expressions (or statements) need to be combined. First the value function representing the first expression,

V1, is evaluated and is combined with the result representing the second expression, V2, e.g. using the�

operator. But this second value function needs to be evaluated in the right context (state): evaluating

the first expression can have side-effects and therefore change the program and component state, and

influence the outcome of a value function (as the expression can include function calls, assignments,

component function calls, etc). To evaluate V2 in the right context we first must apply the side effects of

the first expressions using a state update function Σ1, expressed as Σ1 >>> V2. We can express the value

function that represents the combination of two expressions as V1 � (Σ1 >>> V2). The binary operation

rule is defined as:

∆v ` e1 : 〈V1, Σ1〉 ∆v ` e2 : 〈V2, Σ2〉
(btBinOp)

∆v ` e1 � e2 : 〈V1 � (Σ1 >>> V2), Σ1 >>> Σ2〉

Without explaining the rule in detail, we introduce the conditional operator. The if operator captures the

behaviour of a conditional inside the dependent type. The first argument denotes a function expressing

the value of the conditional. For now, T stands for a tuple PState×CState.

if : (PState×CState→ Value)× (PState×CState→ T)

× (PState×CState→ T)

→ (PState×CState→ T)

if(c, then, else)(ps, cs) =

then(ps, cs) if c(ps, cs) 6= 0

else(ps, cs) if c(ps, cs) = 0

The btRepeat rule can be used to illustrate a more complex rule. The effect of repeat is the composition of

evaluating the bound and evaluating the body a number of times. The latter is captured in a repeat function

that is defined below. The resulting effect can be defined as follows:

∆v ` e : 〈Vex, Σv
ex〉 ∆v ` S : Σv

st
(btRepeat)

∆v ` repeat e begin S end : repeatv(Vex, Σv
ex, Σv

st)

The repeat operator needed in the btRepeat rule captures the behaviour of a loop inside the dependent type.

It gets a function that calculates the number of iterations from a type environment, as well as an environ-

ment update function for the loop body, and results in an environment update function that represents
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the effects of the entire loop. Because the value of the bound must be evaluated in the context before the

effect is evaluated, we need an extra function. The actual recursion is in the repeatv function, also defined

below.

repeatv : (PState×CState→ Value)× (PState×CState→ PState×CState)

× (PState×CState→ PState×CState)

→ (PState×CState→ PState×CState)

repeatv(c, start, body)(ps, cs) = repeat′v(c(ps, cs), body, ps′, cs′)

where (ps′, cs′) = start(ps, cs)

repeat′v : Z× (PState×CState→ PState×CState)× PState×CState

→ PState×CState

repeat′v(n, body, ps, cs) =


(ps, cs) if n ≤ 0

repeat′v(n− 1, body, ps′, cs′) if n > 0

where (ps′, cs′) = body(ps, cs)

In order to explain the component call rule we need an operator for higher order substitution. This operator

creates a new program environment, but retains the component state. It can even update the component

state given a Σ function, which is needed because this Σ needs to be evaluated using the original program

state. The definition is as follows:

[x ← V, Σ] : Var×(PState×CState→ Value)

× (PState×CState→ PState×CState)

→ (PState×CState→ PState×CState)

[x ← V, Σ](ps, cs) = ([x 7→ V(ps, cs)], cs′) where (_, cs′) = Σ(ps, cs)

We also need an additional operator split, because the program state is isolated but the component state

is not. The split function forks the evaluation into two state update functions and joins the results to-

gether. The first argument defines the resulting program state, the second defines the resulting component

state.

split : (PState×CState→ PState×CState)

× (PState×CState→ PState×CState)

→ (PState×CState→ PState×CState)

split(A, B)(ps, cs) = (ps′, cs′)

where (ps′, _) = A(ps, cs) and (_, cs′) = B(ps, cs)
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The component functions and normal functions are stored in the environment ∆v. For each function, both

component and language ones, a triple is stored, which states the variable name of the argument, a value

function that represents the return value, and a state update function that represents the effect on the state

of executing the called function. We assume the component function calls are already in the environment.

The component function call, listed below, can now be easily expressed:

∆v ` e : 〈Vex, Σex〉
(btCmp)

∆v,C. f = (xf , Vf , Σf ) `
C. f (e) : 〈[xf 7→ Vex, Σex] >>> Vf , split(Σex, [xf 7→ Vex, Σex] >>> Σf )〉

Like the component call, we can define the function call. However, to support recursion, a special subst

higher order function is introduced to unfold the function definition once, just before it is executed on a

concrete environment. The subst is defined as:

subst : (PState×CState→ T)

× (PState×CState→ T)

→ (PState×CState→ T)

subst(T, R)(ps, cs) = (T[R← subst(T, R)])(ps, cs)

A recursive call is represented by the abstract higher order function rec, a sort of placeholder for applying

substitution on. There are multiple variants, depending on the resulting type, with the recV one for a

resulting value function, and the recΣ one for a resulting state update function.

recV : PState×CState→ Value

recΣ : PState×CState→ PState×CState

If there is a function body B computing a Value with for example recV in it, the value of the recursive

function can be computed by executing subst(B, recV). As long as the original function terminates on the

given input environment, this analysis will terminate on the same input. This is the essential difference

from the btCmp rule, as can be seen in the definition of btCall below:

∆v, f =(xf , Vf , Σf ) ` e : 〈Vex, Σex〉
(btCall)

∆v, f =(xf , Vf , Σf ) ` f (e) : 〈 [xf 7→ Vex, Σex] >>> subst(Vf , recV( f )),

split(Σex, [xf 7→ Vex, Σex] >>> subst(Σf , recΣ( f ))) 〉

For each language function, a definition is placed in ∆v by means of the btFuncDef rule. The body of the

function is analysed, and recursive calls to the function are replaced with rec placeholders using the btRec

rule. To support this, the function definition rule inserts a special definition in the function environment

∆v , on which the btRec rule works. This leads to the following definition of btFuncDef:

∆v, f =(x) ` e : 〈Vex, Σex〉 ∆v, f =(x, Vex, Σex) ` S : Σst
(btFuncDef)

∆v ` function f (x) begin e end S : Σst
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The placeholders are inserted using the btRec rule. This rule analyse the expression used as argument, like

the component and function call rules do. The definition is in fact very similar to those definitions:

∆v, f =(xf ) ` e : 〈Vex, Σex〉
(btRec)

∆v, f =(xf ) `
f (e) : 〈[xf 7→ Vex, Σex] >>> recV( f ), split(Σex, [xf 7→ Vex, Σex] >>> recΣ( f ))〉

4.2 Energy-aware program transformation

In this section, we present the complete dependent type system, which can be used to determine the energy

consumption of ECA programs. The type system presented here should be viewed as an extension of the

basic dependent type system in section 4.1. Each time the three dot symbol . . . is used, that part of the

rule is unchanged with respect to the previous section. The type system adds an element to the results of

the previous section, signifying the energy bound. Expressions yield a triple, statements yield a pair. The

added element is a function that, when evaluated on a concrete environment and component state, results

in a concrete energy consumption or energy cost.

An important energy judgment is the tdec
function. To account for time-dependent energy usage, we need

this function which calculates the energy usage of all the components over a certain time period. The tdec

function is a higher order function that takes the time it accounts for as argument. It results in a function

that is just like the other function calculating energy bounds: taking two arguments, a PState and a CState.

The definition is given below, which depends on the power draw function φ that maps a component state

to an energy consumption (as explained in section 3.2):

tdec : Time→ (PState×CState→ EnergyCost)

tdec(t)(ps, cs) = t · ∑
e∈cs

φ(e)

We can use this tdec
function to define a rule for variable lookup, as the only energy cost that is induced

by variable access is the energy used by all components for the duration of the variable access. This is

expressed in the etVar rule, inwhich the dots correspond to figure 5 (the first position is lookupx , the second

id):
(etVar)

∆ec ` x : 〈..., ..., tdec(tvar)〉

Using the+ operator (introduced as�, with type T equal to EnergyCost), we can define the energy costs of

a binary operation. Although the rule looks complex, it uses pattern introduced in section 4.1 for the binary

operation. Basically, the energy cost of a binary operation is the cost of evaluating the operands, plus the

cost of the binary operation itself. The binary operation itself only has an associated run-time and by this

means induces energy consumption of components. This is expressed by the tdec(t�) function. For the
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(etConst)
∆ec ` c : 〈..., ..., tdec(tconst)〉

(etVar)
∆ec ` x : 〈..., ..., tdec(tvar)〉

∆ec ` e1 : 〈..., Σ1, E1〉 ∆ec ` e2 : 〈..., Σ2, E2〉
(etBinOp)

∆ec ` e1 � e2 : 〈..., ..., E1 + (Σ1 >>> (E2 + (Σ2 >>> tdec(t�))))〉

∆ec ` e : 〈..., Σ, E〉
(etAssign)

∆ec ` x := e : 〈..., ..., E + (Σ >>> tdec(tassign))〉

∆ec ` e : 〈Vex , Σex , Eex〉
(etCmp)

∆ec, C. f = (xf , ... , ... , Ef , tf ) `
C. f (e) : 〈..., ..., Eex + ([xf 7→ Vex , Σex ] >>> (tdec(tf ) + Ef ))〉

∆ec, f =(xf , ... , ... , Ef ) ` e : 〈Vex , Σex , Eex〉
(etCall)

∆ec, f =(xf , ... , ... , Ef ) ` f (e) : 〈..., ..., Eex + ([xf 7→ Vex , Σex ] >>> subst(Ef , recE( f )))〉

∆ec, f =(xf ) ` e : 〈Vex , Σex , Eex〉
(etRec)

∆ec, f =(xf ) ` f (e) : 〈..., ..., [xf 7→ Vex , Σex ] >>> recE( f )〉

∆ec ` S : 〈Σst, Est〉 ∆ec ` e : 〈..., ..., Eex〉
(etExprConcat)

∆ec ` S,e : 〈..., ..., Est + (Σst >>> Eex)〉

∆ec ` e : 〈..., Σ, E〉
(etExprAsStmt)

∆ec ` e : 〈Σ, E〉
(etSkip)

∆ec ` skip : 〈 ... , zero 〉

∆ec ` S1 : 〈Σ1, E1〉 ∆ec ` S2 : 〈 ... , E2〉
(etStmtConcat)

∆ec ` S1 ;S2 : 〈 ... , E1 + (Σ1 >>> E2)〉

∆ec ` e : 〈Vex , Σex , Eex〉 ∆ec ` St : 〈 ... , Et〉 ∆ec ` S f : 〈 ... , E f 〉
(etIf)

∆ec ` if e then St else S f end :
〈 ... , Eex + (Σex >>> tdec(tif)) + if(Vex , Σex >>> Et, Σex >>> E f )〉

∆ec ` e : 〈Vex , Σex , Eex〉 ∆ec ` S : 〈Σst, Est〉
(etRepeat)

∆ec ` repeat e begin S end : 〈 ... , Eex + repeatec(Vex , Σex , Est, Σst)〉

∆ec, f =(x) ` e : 〈Vex , Σex , Eex〉 ∆ec, f =(x, Vex , Σex , Eex) ` S : 〈Σst, Est〉
(etFuncDef)

∆ec ` function f (x) begin e end S : 〈Est, Σst〉

figure 7 Energy-aware dependent type system. It adds an element to the resulting tuples of figure 6 signifying the

energy consumption of executing the statement or expression. Note that c stands for a 〈const〉 term,

x for a 〈var〉 term, e for a 〈expr〉 term, S for a 〈stmt〉 term,� for a 〈bin-op〉, f for a 〈function-name〉, and
C for a 〈component〉.



binary operation rule we need to apply this pattern twice, in a nested manner, as the time-dependent func-

tion must be evaluated in the context after evaluating both arguments. The (three) energy consumptions

are added by+. One can express the binary operation rule as:

∆ec ` e1 : 〈..., Σ1, E1〉 ∆ec ` e2 : 〈..., Σ2, E2〉
(etBinOp)

∆ec ` e1 � e2 : 〈..., ..., E1 + (Σ1 >>> (E2 + (Σ2 >>> tdec(t�))))〉

Calculating the energy cost of the repeat loop can be calculated by evaluating an energy cost function for

each loop iteration (in the right context). We therefore have to modify the repeatv function to yield an

energy cost, resulting in a new function definition of repeatec :

repeatec : (PState×CState→ Value)× (PState×CState→ PState×CState)

× (PState×CState→ EnergyCost)× (PState×CState→ PState×CState)

→ (PState×CState→ EnergyCost)

repeatec(c, start, cost, body)(ps, cs) =

repeat′ec(c(ps, cs), cost, body, ps′, cs′) where (ps′, cs′) = start(ps, cs)

repeat′ec : Z× (PState×CState→ EnergyCost)

× (PState×CState→ PState×CState)

× PState×CState→ EnergyCost

repeat′ec(n, cost, body, ps, cs) =



0 if n ≤ 0

repeat′ec(n− 1, cost, body, ps′, cs′) if n > 0

+ cost(ps, cs)

where (ps′, cs′) = body(ps, cs)

Using this repeatec function, the definition of the rule for the repeat is analogous to the previous defini-

tion.
∆ec ` e : 〈Vex, Σex, Eex〉 ∆ec ` S : 〈Σst, Est〉

(etRepeat)
∆ec ` repeat e begin S end : 〈 ... , Eex + repeatec(Vex, Σex, Est, Σst)〉

Next is the component function call. The energy cost of a component function call consists of the time

taken to execute this function and of explicit energy cost attributed to this call. The environment ∆ec is

extended for each component function C. f with two elements: an energy judgment Ef ′ and a run-time t f ′ .

Time independent energyusage canbe encoded into thisEf ′ function. For functions defined in the language

the derived energy judgement is inserted into the environment. There is no need for these functions for

an explicit run-time as this is part of the derived energy judgement. Using the patterns described above

the component function call is expressed as:
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∆ec ` e : 〈Vex , Σex , Eex〉
(etCmpF)

∆ec, C. f = (xf , ... , ... , Ef , tf ) `
C. f (e) : 〈..., ..., Eex + ([xf ← Vex , Σex ] >>> (tdec(tf ) + Ef ))〉

4.3 Example

In this example, we demonstrate our analysis on two programs, comparing their energy usage. Each ECA

language construct has an associated execution time bound. These execution times are used in calculating

the energy consumption that is time-dependent. Another source of energy consumption in our modelling

is time-independent energy usage, which can also be associated with any ECA construct. Adding these

two sources together yields the energy consumption.

Consider the example programs in figures 8 and 9. Both programs play #n beeps at #hz Hz (#n and

#hz are input variables). The effect of the first statement is starting a component named SoundSystem,

which models a sound card (actually, functions have a single parameter; this parameter is omitted here

as it is not used). After enabling component SoundSystem, beeps are played by calling the function

SoundSystem.playBeepAtHz(). Eventually the device is switched off. The sound system has two states,

off < on.

For this example, we will assume a start state in which the component is in the off state and an input

n ∈ Z. Furthermore, the SoundSystem.playBeepAtHz() function has a time-independent energy cost of i,

and a call to this function has an execution time of t seconds. The System.sleep() has no associated (time-

independent) energy usage, and takes s seconds to complete. The other component function calls and the

loop construct are assumed to have zero execution time and zero (time-independent) energy consumption.

While switched on, the component has a power draw of u J/s (or W).

We will start with an intuitive explanation of the energy consumption of the program in figure 8, then

continue by applying the analysis presented in this paper and comparing these results. Quickly calculating

the execution time of the program yields a result of n · (t + s) seconds. As the component is switched

on at the start and switched off at the end of the program, the time-dependent energy consumption is

n · (t + s) · u. The time-independent energy usage is equal to the number of calls to transmit, thus n · i,
resulting in an energy consumption of n · (i + (t + s) · u) J.

1 SoundSystem.on();

2 repeat #n begin

3 SoundSystem.playBeepAtHz(#hz);

4 System.sleep()

5 end;

6 SoundSystem.off()

listing 8 Example program.

1 repeat #n begin

2 SoundSystem.on();

3 SoundSystem.playBeepAtHz(#hz);

4 SoundSystem.off();

5 System.sleep()

6 end

listing 9 Alternative program.
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Now, we will show the results from our analysis. Applying the energy-aware dependent typing rules

ultimately yields an energy consumption function and a state update function. Both take a typing and a

component state environment as input. The first rule to apply is etStmtConcat, with the SoundSystem.on()

call as S1 and the remainder of the program as S2. The effect of the component function call, calculated

with etCmpF, is that the component state is increased (as this signifies a higher time-dependent energy

usage). This effect is represented in the component state update function δSoundSystem.on. Since we have

assumed that the call costs zero time and has no time-independent energy cost, the resulting energy

consumption function is the identity function id.

We can now analyse the loop with the etRepeat rule. We first derive the type of expression e, which de-

termines the number of iterations of the loop. As the expression is a simple variable access, which we

assumed not to have any associated costs, the program state and the component states are not touched.

For the result of the expression the type system derives lookup
#n()

as Vex in the rule, which is (a look-up

of) n. This is a function that, when given an input environment, calculates a number in Z which signifies

the number of iterations.

Moving on, we analyse the body of the loop. This means we again apply the etCmpF rule to determine

the resource consumption of the call to SoundSystem.playBeepAtHz(). The call takes time t. Its energy

consumption is u if the component is switched on(). For ease of presentation, the component states

{off , on} are represented as a variable e ∈ {0,1}. The time-independent energy usage of the loop body is

i. The energy consumption function Est of the body is i + e · (t + s) · u J.

We can now combine the results of the analysis of the number of iterations and the resource consump-

tion of the loop body (Est) to calculate the consumption of the entire loop. Basically, the resource con-

sumption of the loop Est is multiplied by the number of iterations Vex . This is done in the function

repeatec(Vex, Σex, Est, Σst), in this case repeatec(lookup
#n()

, id, Est, id). Evaluation after the state update

function (corresponding to the SoundSystem.on() call), which will update the state of the sound system

to on(). Evaluating the sequence of both expressions on the start state results in n · (i + (t + s) · u) J,
signifying the energy consumption of the code fragment.

Analysing the code fragment listed in figure 9 will result in a type equivalent to n · (i + t · u) J, as the cost
of switching the sound system on or off is zero. Given the energy characteristics of the sound system, the

second code fragment will have a lower energy consumption. Depending on the realistic characteristics

(switching a device on or off normally takes time and energy), a realistic trade-off can be made.
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5 OVER APPROXIMATION WITH

A HOARE LOGIC

5.1 Changes to energy-aware modelling

Based on the energy-aware models, an upper-bounds for energy consumption of the modelled system

is derived. In order for the energy-aware model to be suited for the analysis the model should reflect an

upper-bound on the actual consumption. This can be based on detailed documentation or on actual energy

measurements.

To provide a sound analysis, we need to assume that components are modelled in such a way that the

component states reflect different power-levels and are partially ordered. Larger states should imply

greater power draw. We will use finite state models only to enable fix point calculation in our analysis

of while loops. The modelling should be such that the following properties hold (in the context of the full

soundness proof in [Par+13] these properties are axioms):

components states form a finite lattice with a partial order based on the ordering of polynomials (extended

with max) over symbolic variables. Within the lattice each pair of component states has a least upper-

bound.

energy-aware component states are partially ordered This ordering extends the ordering on component

states in a natural way by adding an energy accumulator and a timestamp. The timestamp stores the

time of the latest change to the component state. The earliest timestamp therefore reflects the high-

est energy usage. Therefore, with respect to timestamps the energy-aware component state ordering

should be defined such that smaller timestamps lead to larger energy-aware component states.

power draw functions preserve the ordering i.e. larger states consume more energy than smaller states.

component state update functions δ preserve the ordering For this reason, δ f cannot depend on the argu-

ments of f . To signify this, we will use δ(s) in the logic, instead of δ(s, a). As a result, component

models cannot influence each other. Our soundness proof as can be found in [Ker+14; Par+13] requires

this assumption.

5.2 Severeness of model restrictions

There are several restrictions to the modelling that may seem far from reality:
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component state functions take up a constant amount of time and incidental energy This is needed for the

soundness proof. For instance, when a radio component sends a message, the duration of the func-

tion call cannot directly depend on the number of bytes in the message. In most cases this can be

dealt with by using a different way of modelling. First, one can use an overestimation. Second, such

dependencies can be removed by distributing the costs over multiple function calls. For instance,

the radio component can have a function to send a fixed number of bytes. If it internally keeps a

queue, the additional costs of sending the full queue can be modelled by distributing it over separate

queueing operations.

with each component state a constant power draw is associated However, some hardware may accumulate

heat over time incurring increasing energy consumption over time. Such a ‘heating’ problem can be

modelled e.g. by changing state to a higher energy level with every call of a component function. This

is still an approximation of course. In the future, we want to study models with time driven state

change or with time-dependent power draw.

limited dependencies of the component state functions The arguments of a function in the ECA language

can not influence the outcome of applying the corresponding state function δ. In other words, the

effect of component state functions cannot depend on the arguments of the function in models.

Also, component models cannot influence each other. Both restrictions are needed for soundness

guarantee of our analysis. This restricts the modelling. Using multiple component state functions

instead of dynamic arguments and cross-component calls is a way of modelling that can mitigate

these restrictions in certain cases. Relieving these restrictions in general is part of future work.

component model must be finite state machines Modelling systems with finite state machines is not un-

common, e.g using model checking and the right kind of abstraction for the property that is studied.

In our models the abstraction should be such that the energy consumption is modelled as close as

possible.

These restrictions are due to the desire to over approximate. These limitations do not hamper the precise

program transformation presented earlier on. Based on the involved hardware models, one has to make a

careful decision on what to use.

EXERCISE 5.1 Comparing algorithms with the prototype. We have a prototype of an implementation of the energy

analysis tool available at

http://resourceanalysis.cs.ru.nl/energy/. In this exercisewe are going tomodel real world control software

and analyse it.

(a) Load Radio1.eca. Study the code, and analyse the program. Modify the program so the radio is switched on()

and off() in the loop instead of out the loop. Analyse this model, and calculate the break even point of the two

algorithms. The break even point is (in this case) the N() at which one or the other algorithm is more efficient.
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(b) There is another approach possible given the hardware interface, with buffering and sending items in batches.

This is implemented in Radio2.eca. The variable B stands for the size of the buffer, and K is the number of

buffer positions left in the current iteration. The annotation {K <- B} is needed as extra information to make

the bound more precise. For a buffer of size 1024, what is the break even point compared to Radio1.eca?

(c) In general terms, what is the break even point if comparing Radio1.eca and Radio2.eca? This need to be

expressed symbolically (treat B symbolically). You may have to adjust the cost model in the tab ‘radio’ and

reanalyse the example to quickly discover certain values.

(d) How do the constants in the model of the radio influence the break even point in the previous question? Is it

possible to decide in a general case (without concrete model variables) which algorithm is best?

EXERCISE 5.2 Modelling and analysing a coffee machine. We are going to model and analyse an espressomachine

with a boiler that needs to warm up before making coffee (enabling the boiler incurs a significant incident energy

consumption, keeping a high temperature is relatively energy efficient). After a certain amount of minutes it will

automatically switch off, to save energy, which is a variable in the algorithm. Make a control algorithm, that for

now models user interaction as a parameter indicating the interval in minutes between somebody fetching a coffee.

A sleep can be modelled by a component method that takes a certain amount of time, without incidental energy

consumption.

(a) Implement a model of the coffee machine hardware as used by the algorithm in the prototype. Probably you

will have to simplify in order to make it analysable, but keep it a bit realistic.

(b) Implement the algorithm and analyse the Worst Case Energy Consumption. How does the standby time impact

the energy consumption?

(c) Is there any optimisation opportunity in the algorithm?

(d) If the users exhibit different behaviour, such as always fetching multiple shots of coffee directly after each other,

is this algorithm optimal? Can you specialise the algorithm for such specific user behaviour?

(e) Reflect on the process. What can be improved? Is the bound what you expected?

5.3 A Hoare logic for energy analysis

This section treats the definition of an energy-aware logic with energy analysis rules that can be used to

bound the energy consumption of the analysed system. The full set of rules is given in figure 10. These

rules are deterministic; at eachmoment only one rule can be applied. Recursion is currently not supported

in this analysis.

Our energy consumption analysis depends on external symbolic analysis of variables and loop analysis.

The results of this external analysis are assumed to be accessible in our Hoare logic in two ways.
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(aConst)
{Γ; t; ρ} n {Γ; t; ρ}

(aVar)
{Γ; t; ρ} x {Γ; t; ρ}

{Γ; t; ρ} e1 {Γ1; t1; ρ1}
{Γ1; t1; ρ1} e2 {Γ2; t2; ρ2} Γ2[Imp← 〈s(Γ2(Imp)), a(Γ2(Imp)) + E�, τ(Γ2(Imp))〉] = Γ3

(aBinOp)
{Γ; t; ρ} e1 � e2 {Γ3; t2 + t�; ρ2}

{Γ; t; ρ} e {Γ1; t1; ρ1} Γ1[Imp← 〈s(Γ1(Imp)), a(Γ1(Imp)) + Eassign, τ(Γ1(Imp))〉] = Γ2
(aAssign)

{Γ; t; ρ} x := e {Γ2; t1 + tassign; ρ2}

Γ[C ← 〈δC. f (s(Γ(C))), a(Γ(C)) + EC.f + td(Γ(C), t), t〉] = Γ1
(aCmpF)

{Γ; t; ρ} C. f(()args)() {Γ1; t + tC.f; ρ}

e = a ∈ ρ

{Γ; t; ρ} e {Γ1; t1; ρ1}
{Γ1; t1; ρ1[x′ ← a]} e1[x f ← x′] {Γ2; t2; ρ2} x′ fresh in e1

(aCallF)
∆, f = (e1,x f ) ` {Γ; t; ρ} f(()e)() {Γ2; t2; ρ2}

(aSkip)
{Γ; t; ρ} skip {Γ; t; ρ}

{Γ} S {Γ1} {Γ1} e {Γ2}
(aExprConcat)

{Γ} S,e {Γ2}

{Γ; t; ρ} S1 {Γ1; t1; ρ1} {Γ1; t1; ρ1} S2 {Γ2; t2; ρ2}
(aConcat)

{Γ; t; ρ} S1; S2 {Γ2; t2; ρ2}

{Γ; t; ρ} e {Γ1; t1; ρ1}
Γ2 = Γ1[Imp← 〈s(Γ1(Imp)), a(Γ1(Imp)) + Eif, τ(Γ1(Imp))〉]

{Γ2; t1 + tif; ρ1} S1 {Γ3; t2; ρ2}
{Γ2; t1 + tif; ρ1} S2 {Γ4; t3; ρ3}

(aIf)
{Γ; t; ρ} if e then S1 else S2 end {lub(Γ3, Γ4); max(t2, t3); ρ4}

Γ1 = process-td(Γ, t)

{wci(Γ1,e; S); t; ρ} e {Γ2; t1; ρ1}
Γ2[Imp← 〈s(Γ2(Imp)), a(Γ2(Imp)) + Ewhile, τ(Γ2(Imp))〉] = Γ3

{Γ3; t1 + twhile; ρ1} S {Γ4; t2; ρ2}
(aWhile)

{Γ; t; ρ} while[b] e do S end {oe(Γ1, t, Γ4, t2, b); ρ3}

figure 10 Energy analysis rules.



First, we restrict the scope of our analysis to programs that are bound in terms of execution. We assume

that all loops and component functions terminate on any input. Each loop is annotated with a bound:

while[b]. The bound is a polynomial over the input variables, which expresses an upper-bound on the

number of iterations of the loop. We have added the b to the while rule in the energy analysis rules tomake

this assumption explicit. Derivation of bounds is considered out of scope for our analysis. We assume that

an external analysis has produced a sound bound.

Second, the symbolic state environment ρ gives a symbolic state of every variable at each line of code,

e.g. {x1 = e1} x1 := x1 + x2 + x3 {x1 = e1 + x2 + x3}, plus other non-energy related properties invariants
that have previously been proven. In figure 10 we included this prerequisite by denoting ρ, ρ1, … explicitly.

As these variables represent external input, thet are not bounded by our logic.

All the judgements in the rules have the following shape: {Γ; t; ρ} S {Γ′; t′; ρ′}, where Γ is the set of all en-

ergy aware component states, t is the global timeand ρ represents the symbolic state environment retrieved

from the earlier standard analysis. As (energy-aware) component states are partially ordered, we can take

a least upper bound of states lub(s1, s2) and sets of energy-aware component states lub(Γ1, Γ2).

We will highlight the most relevant aspects of the rules. The aCmpF rule uses the td(Γ(C), t) function to

estimate the time-dependent energy consumption of component function calls. The aIf rule takes the least

upper bound of the energy-aware component states and the maximum of the time estimates.

Special attention is warranted for the aWhile rule. We study the body of the while loop in isolation. This

requires processing the time-dependent energy consumption that occurred before the loop process-td. An

overestimation oe of the energy consumption of the loop will be calculated by taking the product of the

bound on the number of iterations and an overestimation of the energy consumption of a single iteration,

i.e. the worst-case iteration wci. The worst-case-iteration is determined by taking the least upper-bound

of the set of all states that can occur during the execution of the loop. As there are a finite number of states

for each component, this set can be determined via a fix point construction fix. The fix point is calculated

by iterating the component iteration function ci.

In order to support the analysis of statements after the loop, also an overestimation of the component

states after the loop has to be calculated. For brevity, in figure 10, this is dealt with in the calculation of

oe.

Five calculations are needed:

1 Component iteration function ci. The component iteration function cii(S) aggregates the (possibly

overestimated) effects of S on C. It performs the analysis on S, then considers only the effects on C.

If there are nested loops or conditionals, the effects on the state of C are overestimated in the same

manner as in the rest of the analysis. By cin
i (S) wemean the component iteration function applied n

times: cii(S) ◦ cin−1
i (S), with ci1

i (S) = cii(S).
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2 Fix point function fix. Because component states are finite, there is an iteration after which a com-

ponent is in a state that it has already been in, earlier in the loop (unless the loop is already finished

before this point is reached). Since components are independent, the behaviour of the component

will be identical to its behaviour the first time it was in this state. This is a fix point on the set of

component states that can be reached in the loop. It can be found using the fixi(S) function, which

finds the smallest n for which ∃k. cin+1
i (S) = cik

i (S). The number of possible component states is an

upper bound for n.

3 Worst-case iteration function wci. To make a sound overestimation of the energy consumption of a

loop, we need to find the iteration that consumes the most. As our analysis is non-decreasing with

respect to component states, this is the iteration which starts with the largest component state in

the precondition. For this purpose, we introduce the worst-case iteration function wcii(S), which

computes the least-upper bound of all the states up to the fix point:

wcii(S) = lub(ci0
i (S), ci1

i (S), ... , cifixi(S)
i (S))

The global versionwci(Γ,S) is defined by iteratively applying thewcii(S) function to each component

C in Γ.

4 Overestimation function oe. This function overestimates the energy-aware output states of the while

loop. It needs to do three things: find the largest non-energy-aware output states, find the minimal

timestamps and add the resource consumption of the loop itself. This function gets as input: the start

state of the loop Γin , the start time t, the output state from the analysis of the worst-case iteration Γout ,

the end time from the analysis of the worst-case iteration t′ and the iteration bound ib. It returns an

overestimated energy-aware component state and an overestimated global time.

Because component state update functions δ preserve the ordering, the analysis of the worst-case

iteration results in the maximum output state for any iteration. This, however, does not yet address

the case where the loop is not entered at all. Therefore, we need to take the least-upper bound of the

start state and the result of the analysis of the worst-case iteration.

To overestimate time-dependent energy usage, we must revert component timestamps to the time

of entering the loop. So, if a component is switched to a greater state at some point in the loop, the

analysis assumes it has been in this state since entering the loop. Note that the least-upper bound

of energy-aware component states does exactly this: maximise the non-energy-aware component

state and minimise the timestamp. Taking Γbase = lub(Γin, Γout) we find both the maximum output

states and the minimum timestamps.

Now, we can add the consumption of the loop itself. We perform the following calculation for each

component:

a(Γbase(C)) = a(Γin(C)) + b · (a(Γout(C))− a(Γin(C)))
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We perform something similar for the execution time:

tret = t + b · (t′ − t)

5 Processing time-dependent energy function process-td. When analysing an iteration of a loop, we

must take care not to include any energy consumption outside of the iteration. This would lead

to a large overestimation, since it would be multiplied by the (possibly overestimated) number of

iterations. Therefore, before analysing the body, we add the time-dependent energy consumption to

the energy accumulator for each component and set all timestamps to the current time. Otherwise,

the time-dependent consumption before entering the loop would also be included in the analysis of

the iteration. We introduce the function process-td(Γ, t), which adds td(C, t) to a(C) and sets τ(C)

to t, for each component C in Γ.

Applying the rules overestimates the sum of the incidental energy consumption and the time-dependent

energy consumption. However, the time-dependent energy consumption is only added to the accumulator

at changes of component states. So, as for the energy-aware semantics, the time the components are in

their current state should still be accounted for by calculating asystem(Γend, tend).

5.4 Example

To illustrate our analysis, we model a wireless sensor node, which has a sensor S and a radio R. We

analyse the energy usage of a program that repeatedly measures the sensor for ten seconds, then sends

the measurement over the radio, shown in figure 11. The example illustrates both time-dependent (sensor)

and incidental (radio) energy usage. We choose a highly abstract modelling to keep the example brief and

simple. A more elaborate example can be found in [Sch+14], where two algorithms are compared using

an implementation of this Hoare logic. A similar analysis is performed in [Par+13] by hand, comparing two

algorithms.

Modelling The sensor component S has two states: son and soff. It does not have any incidental energy

consumption. It has a power draw (thus time-dependent consumption) only when on. For this power draw

we introduce the constant aon. There are two component functions, namely on() and off(), which switch

between the two component states.

The radio component R only has incidental energy consumption. It does not have a state. Its single

component function is send(), which uses tR.send time and ER.send energy.

We also need a timing model. For the sake of presentation, a very simply model is used in which only

assignment takes time tassign. The other language constructs are assumed to execute instantly.

Application of the energy-aware semantics from figure 5 on the loop body results in a time consumption

tbody of 10 + tR.send + 2 · tassign and an energy consumption abody of 10 · aon + ER.send. Intuitively, the time

and energy consumption of the whole loop are n · tbody and n · abody.
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1 while[n] n > 0 do

2 S.on();

3 ... some code taking 10 seconds ...

4 x := S.off();

5 R.send(x);

6 n := n - 1;

7 end

listing 11 Example program.

Energy consumption analysis The analysis (figure 10) always starts with a symbolic state. Note that only

the sensor component S has a state. We introduce the symbol ons
0 for the symbolic start-state (on or off)

of the sensor.

We start the analysis with the while loop. So, we apply the aWhile rule:

Γ1 = process-td(Γ0, t0)

{wci(Γ1,n > 0; Sbody); t0; ρ0} n > 0 {Γ2; t1; ρ1} {Γ2; t1; ρ1} Sbody {Γit; tit; ρit}
(aWhile)

{Γ0; t0; ρ0} while[n] n > 0 do Sit end {oe(Γ1, t0, Γit, tit, ρ(n)); t0 + n · (tit − t0); ρend}

twhile was omitted because in the timing model it is equal to 0. We will first solve the process-td and wci

functions, then analyse the loop guard and body (i.e. the part above the line), then determine the final

results with the oe function.

We first add time-dependent energy consumption and set timestamps to t0 for all components using the

process-td function. If we would not do this, the time-dependent energy consumption before the loop

would be included in the calculation of the resource consumption of the worst-case iteration. As this

would be multiplied by the number of iterations, it would lead to a large overestimation. R does not have

a state, so we only need to add the time-dependent consumption of S: td(S, t0) = φS(ons
0) · (t0 − τ0(S)),

where τ0(S) is the symbolic timestamp when starting the analysis.

We must now find the worst-case iteration, using the wci function. For the S component we need

the cis(n > 0; Sbody) function. As the other components do not have a state, ciimp(n > 0; Sbody) and

cir(n > 0; Sbody) are simply the identity function. The loop body sets the state of the sensor to soff, in-

dependent of the start state. So, cis(n > 0; Sbody) always results in soff. Now we can find the fix point. In

the first iteration, we enter the loopwith symbolic state ons
0. In the second iteration, the loop is enteredwith

state soff. In the third iteration, the loop is again entered with state soff. We have thus found the fix point.

Intuitively, this means that, since after any number of iterations the sensor is off, the symbolic start state,

in which it is unknown whether the sensor is on or off, yields the worst-case. The worst-case iteration is

calculated by:

wcis(n > 0; Sbody) = lub(ci0
s (n > 0; Sbody), ci1

s (n > 0; Sbody)) = ons
0

As there are no costs associated with the evaluation of expressions, the analysis of n > 0 using the aBinOp

rule does not have any effect on the state.
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We continue with the loop body, starting with a component function call to on():

Γ3 = Γ2[S← 〈δS.on(s(Γ2(S))), a(Γ2(S)) + td(Γ(C), t1), t1〉]
(aCmpF)

{Γ2; t1; ρ1} S.on() {Γ3; t1; ρ2}

There is no incidental energy consumption or time consumption associatedwith the call. Wemust however

add the time-dependent energy consumption to the energy accumulator, by adding td(S, t). Since we have

just set τ(S) to t0 and the evaluation of n > 0 costs no time, hence t1 = t0, td(S, t1) results in 0. The

function δR.on produces new component state son. It also saves the current timestamp to the component

state, in order to know when the last state transition happened. For simplicity, we omit the application of

the concatenation rule aConcat in the following.

After ten seconds of executing other statements (which we assume only cost time, no energy), the sensor

is turned off. The call to the function off() returns the measurement, which is assigned to x. We must

therefore first apply the aAssign rule, which adds tassign to the global time. We now apply the aCmpF rule to

the right-hand side of the assignment, i.e. the call to S.off(). This updates the state of the component to

soff. It also executes the td(S, t2) function in order to determine the energy cost of the component being on

for ten seconds. Because t2 = τ(S) + 10 and our model specifies a power draw of aon for son, this results

in 10 · aon. We add this to the energy accumulator of the sensor component.

We apply the aCmpF rule again, this time for the send() function of the radio. As the transmission costs

a fixed amount of energy, all time-dependent constants associated with transmitting are set to zero. The

applicationof aCmpFonly adds the incidental energyusage specified byER.send and the constant timeusage

tR.send. Finally, we apply aBinOp, which adds no costs, and the aAssign rule, which again adds tassign.

Analysis of the worst-case iteration results in global time tit and energy-aware component state envi-

ronment Γit. Next we apply the overestimation function oe(Γ1, t0, Γit, tit, ρ(n)). This takes as base the

least-upper bound of Γ1 and Γit , which in this case is exactly Γ1 (note that the state of the sensor is over-

estimated as ons
0). It then adds the consumption of the worst-case iteration, multiplied by the number of

iterations. The worst-case iteration results in a global time of t0 + 10 + tR.send + 2 · tassign. So, oe results

in a global time tend of t0 + n · (10 + tR.send + 2 · tassign). Note that this is equal to the time consumption

yielded by the energy-aware semantics.

A similar calculation is made for energy consumption, for each component, before we can calculate asystem.

In total, the oe function results in an energy usage of a0 + n · (10 · aon + ER.send). However, we still need to

add the time-dependent energy consumption for each component. This is where potential overestimation

occurs in this example. SinceRdoes not have a state, we only need to add the time-dependent consumption

of S. After the analysis of the loop, the state of the sensor is overestimated as ons
0. This leads to an

overestimation when ons
0 = son ∧ n > 0, and otherwise the result is equal to that of the energy-aware

semantics. The added consumption is:

td(S, tend) = φS(ons
0) · (tend − t0) = φS(ons

0) · n · (10 + tR.send + 2 · tassign)
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EXERCISE 5.3 Theoretical limitations.

(a) Why are there two if()-rules in the semantics and only one if()-rule in the energy analysis rules? (likewise

for the while()).

(b) In the while()-rule in the Hoare logic, a fix point is needed. Why is the fix point needed?

(c) In the semantics (not the analysis), is it possible to have models in which:

— the state change depends on the argument of a component function?

— the energy draw function can increase over time

— the energy draw function can decrease over time

(d) Why should component state form a finite lattice in the energy analysis?
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6 DISCUSSION

The approaches proposed are a first step in making the software industry more aware of the resources

they consume, and therefore more sustainable. The presented methods enable programmers to asses the

footprint of their software, in terms of memory and energy.

These approaches show that resource analysis is feasible for energy in a precise or over approximated

fashion. These approaches are implemented in prototypes, which demonstrate that these methods can

be applied in a practical setting, since these analysis methods neither require a super computer nor huge

amounts of resources to perform. Implementation details of the software analysed impact the resource

consumption significantly, and this is reflected by the bounds (or types) yielded by applying these meth-

ods.

Abstraction and encapsulation are often propagated in computer science as a design philosophy. But

they can hinder the insight of programmers in the behaviour of their programs. The proposed analysis

methods, and more specifically the accompanying case studies, show that the implementation details

have a significant influence on the derived resource consumption bounds. More layers of abstraction and

encapsulation means less control, and potentially higher resource consumption.

Returning to the societal impact as mentioned in the introduction, the methods presented in this thesis

can help to verify that software does not negatively impact society, not even when large quantities of

devices are running the software. When development teams are able to apply these approaches, they may

gain additional insight in the behaviour of their software and may asses their energy footprint. Problems

may be spotted early in the design and development process, before mass production and distribution of

the devices. The ability to analyse these programs in this way is one essential step towards making the

software industry more sustainable, however much is yet to be done. The approaches presented in this

thesis and contributions of others in this line of research potentially have a high societal relevance.

6.1 Validity

There are several validity constraints to the techniques discussed. Although the derivation of bounds

is sound, and the derivation of energy consumption is precise, the quality thereof depends directly on

the quality of the component models used. The restrictions on component models are severe, e.g. the

energy consumption is assumed to be constant in every state of the component. This is in practice not

true for most devices, e.g. the energy consumption can be a function over time. To correctly derive energy
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consumption (bounds), component models should be bound on their maximum energy usage by other

means. To this end, alternative techniques can potentially be applied, such as model transformations and

timed model checking, however this is left for future research.

The construction and validation of component models is hard, as there are several real world practical

issues. If basing the component model on specifications from hardware vendors, all kinds of errors in the

specification are transferred to the component model. Production errors in the hardware, and eventually

the degradation of hardware, can induce erratic energy consumption behaviour that does not conform to

the specification/component model. Validating a component model with a test setup is hard, as energy

is hard to measure. Small differences in energy consumption are hard to measure correctly, and outside

condition like temperature can influence the results greatly. It differs significantly from the other resources

discussed in the other chapters, which are measurable with great precision within a computer by the

computer itself. Validating if the number of states a component model can be in, is the same number of

states a hardwaremodel can be in is a hard problem by itself. With powerfulmodels, this validation process

with real hardware can potentially last a life time, as least of the hardware in question.

There is another potential source of derived energy consumption not matching the actual behaviour in

a realistic situation. Compiler errors and optimisations can impact the (energy) behaviour of a source

program greatly. The compiler has influence on the timing of high level language constructs. The timing

constants used for these language constructs should match the upper bound it takes to execute those lan-

guage constructs. Complicatingmatters evenmore is the complex design of modern processors executing

the software. Even relatively small embeddedmicroprocessors have features, like a register bypass, which

impact the execution timing of statements significantly.

These constraints onmodelling hardware components and validity implications should be lifted and inves-

tigated in future work tomake the technique discusses applicable to general real-world problems. However,

depending on the context and the precision needed, the current technique can already be applicable. If the

hardware component is relatively simple, a conforming component model can be constructed. Another

relevant area for the techniques discussed is to give feedback to a prospective programmer, so during

construction of software he can optimise the energy consumption.

6.2 Related work

Much of the research that has been devoted to producing green software is focussed on a very abstract

level, defining programming and design patterns for writing energy-efficient code [PBL13; Alb10; Sax10;

Ran10; NW01; Siv+02]. In [Bri+13], a modular design for energy-aware software is presented that is based on

a series of rules on UML schemes. In [Coh+12] and [Sam+11], a program is divided into ‘phases’ describing

similar behaviour. Based on the behaviour of the software, design level optimisations are proposed to

achieve lower energy consumption.
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Contrary to the abstract levels of the aforementioned papers, there is also research on producing green

software on a very low, hardware-specific level [JML06; Ker+13]. Such analysis methods work on specific

architectures ([JML06] on SimpleScalar, [Ker+13] on XMOS ISA-levelmodels), while our approach is hardware-

parametric.

Furthermore, there is research on building compilers that optimize code for energy-efficiency. In [Zhu+09],

the implementation of several energy optimisation methods, including dynamic voltage scaling and bit-

switchingminimisation, into the GCC compiler is described and evaluated. Iterative compilation is applied

to energy consumption in [GCB05]. In [Meh+97], a technique is proposed inwhich register labels are encoded

alternatively to minimise switching costs. This saves an average of 4.25% of energy, without affecting

performance. The human-written assembly code for an MP3 decoder is optimised by hand in [Šim+00],

guided by an energy profiling tool based on a proprietary ARM simulator. In [Zha+03], functional units are

disabled to reduce (leakage) energy consumption of a VLIW processor. The same is done for an adaptation

of a DEC Alpha 21264 in [YLL06]. Reduced bit-width instruction set architectures are exploited to save

energy in [SD04]. Energy is saved onmemory optimisations in [Joo+02; Ver+06; Jon+09; LC03], while [OYI01;

Sap+02] focus on variable-voltage processors.

Sustainability can also be seen as a quality property, as explained in [Lag+15]. A framework called Green

is presented in [BC10], allowing programmers to approximate expensive functions and calculate Quality of

Service (QoS) statistics. It can thus help leverage a trade-off between performance and energy consumption

on the one hand, and QoS on the other.

In [Bri+14], Resource-Utilization Models (RUMs) are presented, which are an abstraction of the resource be-

haviour of hardware components. The component models in this paper can be viewed as an instance of

a RUM. RUMs can be analysed, e.g. with the model checker Uppaal, while we use a dedicated dependent

type system. A possible future research direction is to incorporate RUMs into our analysis as component

models.

Analyses for consumption of generic resources are built using recurrence relation solving [Alb+11], amor-

tised analysis [HAH11], amortisation and separation logic [Atk10] and a Vienna Development Method style

program logic [Asp+07]. The main differences with our work are that we include an explicit hardware

model and a context in the form of component states. This context enables the inclusion of power-draw

that depends on the state of components..

Several dependently typed programming languages exist, such as Epigram [McB05] and Agda [BDN09]. The

Deputy system, which adds dependent typing to the C language, is described in [Con+07]. Dependent

types are applied to security in [ML10]. Security types there enforce access control and information flow

policies.
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6.3 Future work

In future work, we aim to implement this analysis in order to evaluate its suitability for larger systems and

validate practical applicability. We intend to experiment with implementations of various derived approxi-

mating analyses in order evaluate which techniques / approximations work best in which context.

A limitation is currently that only a system controlled by one central process (processor) can be analysed.

Modern systems often consists of a network of interacting systems. Therefore, incorporating interacting

systems would increase applicability of the approach.

Another future research direction is to expand the supported input language. Currently, recursion is only

supported for deriving exact energy consumption given a concrete environment. To add recursion to

the over approximating analysis, an approach is to use the function signatures to compose a set of cost

relations (a special case of recurrence relations). A recurrence solver can then eliminate the recursion in

the resulting function signatures. In order to support data types, a size analysis of data types is needed to

enable iteration over data structures, e.g. using techniques similar to [SET13; TSv09].

On the language level the type system is precise, however it does not take into account optimisations

and transformations below the language level. This can be achieved by analysing the software on a lower

level, for example the intermediate representation of a modern compiler. Another motivation to use such

an intermediate representation as the input language is support for (combinations of) many higher level

languages. In this way, programs written in and consisting of multiple languages can be analysed. It

can also account for optimisations (such as common subexpression elimination, inlining, statically eval-

uating expressions), which in general reduce the execution time of the program and therefore impact

the time-dependent energy usage (calls with side effects like component function calls are generally not

optimised).

Scientifically speaking, there is still much work to be done. This includes, but is not limited to:

analysing parallel programs for resource usage Parallel programs have many interesting interactions, for a

large part depending on the exact timing. This makes deriving upper bounds on resource analysis

difficult, as the precision suffers. This results in a large overshoot, making the derived bound less

useful in practice.

integrate timing in the resource bounds Resource usage can be viewed as a function over time. Viewed this

way, it enables more insight into the behaviour of the resource usage. Together with information on

synchronisation moments, and possible scheduling policies, this opens up the possibility to derive

more precise resource bounds by adding bounds of processes in the periods between synchronisation

moments.

making the tools applicable in practice Themethods are demonstratedwith prototypes on limited case stud-

ies. These methods are yet to be tested on large scale in a practical setting, by programmers. Ideally,

these tools are integrated in an IDE, enabling these tools to be used in a dailyworkflowof a programmer.
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support for programming languages used in practice Not all language constructs used in the latest itera-

tions of programming languages are supported by the analysis methods. There will always be a

gap between the latest versions of programming languages and analysis methods, as certain pro-

gramming constructs are hampering the analysis of programs. Just like goto is considered harmful,

certain constructs should be avoided if a programmer wants to keep their code analysable by these

approaches. Other constructs need to be implemented and/or the analysis methods adjusted to cover

these constructs.

symbolic execution for energy Another approach is possible besides the program transformation deriving

an exact bound for concrete input and the over approximation resulting in symbolic bounds. By

using symbolic execution, a result can be obtained, that is both symbolic and precise. Future research

should be focussed on using a different interpretation of the derived types, so these types can become

a common foundation to base multiple kinds of analysis on.

validation study A validation study, validating the obtained bounds with measurements from a real setup.

This is useful to increase the perceived reliability of the approaches presented in this thesis.
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