
Open Universiteit
www.ou.nl

Automated Testing at the User Interface level

Citation for published version (APA):

Vos, T. E. J., Rueda, U., & Prasetya, W. (2016). Automated Testing at the User Interface level. Poster session
presented at ICT.OPEN2016, Amersfoort, Netherlands.

Document status and date:
Published: 01/01/2016

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 06 Nov. 2024

https://research.ou.nl/en/publications/5403e97f-5e56-4cea-9247-026219b24344

Automated Testing at the User Interface level

Tanja E.J. Vos
Universidad Politécnica de Valencia

Open Universiteit
Email: tvos@pros.upv.es, tanja.vos@ou.nl

Urko Rueda Molina
Universidad Politécnica de Valencia

Email: urueda@pros.upv.es

Wishnu Prasetya
Universiteit van Utrecht

Email: s.w.b.prasetya@uu.nl

I. INTRODUCTION

Graphical User Interfaces (GUIs) represent the main con-
nection point between a software’s components and its end
users and can be found in almost all modern applications.
This makes them attractive for testers, since testing at the GUI
level means testing from the user’s perspective and is thus
the ultimate way of verifying a program’s correct behaviour.
Current GUIs can account for 45-60% of the entire source
code [1] and are often large and complex. To be effective, UI
testing should be automated.

A substantial part of the current state-of-the art for au-
tomating UI testing is still based on the Capture and Replay
(CR) technique [2]. CR requires significant human interven-
tion to record interactions (i.e. clicks, keystrokes, drag/drop
operations) that are used as regression tests for new product
releases. A known concern of CR is that it creates a critical
maintenance problem because the test cases easily break when
the UI evolves, which happens often. A more advanced tech-
nique, Visual testing [3], takes advantage of image processing
algorithms to simulate step by step human interactions. Though
visual approaches simplify the work of testers, they are slow,
imprecise (prone to false positives with wrong UI element
identification, and false negatives with missed UI elements),
and also rely on the GUI stability.

We present a completely different approach to automated
GUI testing called TESTAR1 (Test Automation at the user
inteRface level). TESTAR automatically and dynamically gen-
erates test sequences based on a tree model (automatically
derived from the UI through the Accessibility API). No test
cases are recorded and the tree model is inferred for every
state, this implies that tests will run even when the GUI
changes. This reduces the maintenance problem that threatens
the techniques mentioned earlier.

II. TESTAR ENGINE FOR AUTOMATED USER INTERFACE
TESTING

TESTAR performs the steps as is shown in Fig. 1: (1)
start the SUT; (2) obtain the GUI’s State (a widget tree2); (3)
derive a set of sensible actions that a user could execute in a
specific SUT’s state (i.e. clicks, text inputs, mouse gestures);
(4) select one of these actions (random or using some search-
based optimization criteria); (5) execute the selected action; (6)
apply the available oracles to check (in)validness of the new

1http://www.testar.org
2TESTAR uses the Operating System’s Accessibility API, which has the

capability to detect and expose a GUI’s widgets, and their corresponding
properties like: display position, widget size, ancestor widgets, etc.

START
SUT

SCAN GUI +
OBTAIN

WIDGET TREE

more
actions?

DERIVE SET
OF USER
ACTIONS

EXECUTE
ACTION

No

Yes

STOP
SUT

optional
instrumentation

ORACLEFAULT?
Yes

No

more sequences?
SELECT
ACTION

Domain Experts Action
Definitions

Oracle

SUT

Replayable
Erroneous Sequences

1 2

6

3

4

57

11

Fig. 1. TESTAR testing flow

UI state. If a fault is found, stop the SUT (7) and save a re-
playable sequence of the test that found the fault. If not, keep
on testing if more actions are desired within the test sequence.

Using TESTAR, you can start testing immediately and
you do not need to specify test cases in advance. TESTAR
automatically generates and executes test sequences based on a
structure that is automatically derived from the UI through the
accessibility API. Without specifying anything, TESTAR can
detect the violation of general-purpose system requirements
through implicit oracles like those stating that the SUT should
not crash, the SUT should not find itself in an unresponsive
state (freeze) and the GUI state should not contain any widget
with suspicious words like error, problem, exception, etc.

To ease testers work, the tool provides a basic testing
protocol that can be customized for concrete needs in particular
SUTs. Protocol customization is performed through an end-
user compilable Java class file. The class contains a method
for each of the steps 1 to 7 in Fig. 1). For step 6, the method
getVerdict defines the test oracles in the form of predicates
over the SUT’s GUI states. These oracles are the requirements
that are required to hold in all the GUI states that are reachable
from the SUT initial states. Out of the box, TESTAR provides
an implementation of getVerdict that contains oracles for
checking general-purpose requirements, i.e. those that need
to hold for any software system independent of its context
and specific objectives. These are for example requirements
that state that: the SUT should not crash, the SUT should
not find itself in an unresponsive state (freeze), the GUI state
should not contain any widget with suspicious words like error,
problem, exception, etc. to the user”. Currently, oracles in
TESTAR are expressed in Java and Figure 2 shows the code
for implementing the general-purpose oracles.

III. INCREMENTAL ORACLE AND REQUIREMENTS
CONSTRUCTIONS

While our application is automatically being tested for
stability, crashes and undesired outputs, we can start adding

protected Verdicts getVerdicts(State state){
Assert.notNull(state);
verdicts = new Verdicts():
verdicts.add(oracle_Crash (state));
verdicts.add(oracle_Responsiveness(state));
verdicts.add(oracle_ SuspiciousTitles(state));
return verdicts;

}
protected Verdict oracle_Crash (State state){

if(!state.get(IsRunning,false))
return new Verdict("System offline! It crashed?");

}
protected Verdict oracle_Responsiveness (State state){

if(state.get(NotResponding, true))
return new Verdict("System is unresponsive!");

}
protected Verdicts oracle_SuspiciousTitles(State state){

verdicts = new Verdicts():
String titleRegEx = settings().get(SuspiciousTitles);

// search all widgets for suspicious titles
for(Widget w : state){

String title = w.get(Title, "");
if(title.matches(titleRegEx)){
verdicts.add(new Verdict("......"));

}
return verdicts;

}

Fig. 2. Default oracles for general-purpose requirements in TESTAR

more and more oracles that test more specific requirements
of our application. This way we incrementally create the
requirements, this is something that turns out to be very helpful
when dealing with legacy systems.

To test other requirements, we express them as oracles and
add them to the method getVerdict. The idea is that the
tester only specifies what quality properties should hold. This
way we build up the requirements while we test and testing
can start early and even in the absence of clear requirements.

As an example, think we want to test an accessibility
requirement from the W3C WAI that states all images should
have an alternate textual description. We just need to add an
oracle like the one below:

protected Verdicts oracle_ImagesTextDescripWAI(State state){
verdicts = new Verdicts():
Role role = w.get(Tags.Role);
if (role.equals("UIAImage") && title.isEmpty())

verdicts.add(new Verdict(0.1,
"No alternate text descr");

return verdicts;
}

Other typical examples of requirements that we can express
and test: all colour combinations between foreground and
background are legible; the content of text box T always
matches a regular expression R; all hyperlinks have a valid
target site; the font, size and colour of each label are coherent
with some accessibility standard; all widgets of type T in a
range R share the same colour attributes (style guide rule); the
content of text box T always matches a regular expression R;
all hyperlinks have a valid target site, etc.

IV. TECHNOLOGY AGNOSTIC

TESTAR adopts the hypothesis that the majority of UIs
are conceptually very similar. The only thing that varies is the
underlying technology and the look and feel. But if sufficient
state information is available i.e. the types, positions and
properties of all widgets on the screen then testing an iPhone

Abstraction Layer Test Execution Control
Test OracleUI Model

Plugin Plugin

MS Windows, Mac OS, Android, IOS, Web…..

Test Execution Environments

Fig. 3. Abstraction layer and the extensible plugin architecture of TESTAR

App is not much different from testing a Windows desktop
application or an HTML website.

TESTAR’s abstraction layer and the extensible plugin ar-
chitecture of TESTAR (see Figure 3) makes it highly technol-
ogy agnostic. The plugins will deal with the process of fetching
the state information and executing UI actions for different
platforms. The abstraction Layer, which will have a uniform
interface that allows to access the UI state information in a
standardised way. It will allow to simulate input in the form
of clicks, drag and drop operations, swipes, pinches, audio
input, etc. in order to operate the UI. The abstraction layer
abstracts from different technologies, shields other components
from technologic details and allows testers to concentrate on
strategic parts of sequence and test suite generation.

V. CONCLUSIONS

TESTAR has been successfully applied in different indus-
trial context [4], obtaining feedback for improved innovation
transfer and eventual market-adopting.

Currently, TESTAR is presented as one of the research
results that are transferred to industry as part of the Spanish
(and soon also the European) Software Testing Innovation
Alliance3. This alliance brings together key stakeholders in
software testing to jointly work to improve innovation and
technology transfer from University to Industry. The objective
is to increase research impact in practice, education, business
and also feedback into the research.

Acknowledgments.: FITTEST project, ICT-2009.1.2 no
257574, SHIP project (EACEA/A2/UHB/CL 554187) and the
PERTEST project (TIN2013-46928-C3-1-R).

REFERENCES

[1] A. M. Memon, A comprehensive framework for testing graphical user
interfaces, 2001, advisors: Mary Lou Soffa and Martha Pollack; Com-
mittee members: Prof. Rajiv Gupta (University of Arizona), Prof. Adele
E. Howe (Colorado State University), Prof. Lori Pollock (University of
Delaware).

[2] B. N. Nguyen, B. Robbins, I. Banerjee, and A. M. Memon, “Guitar:
an innovative tool for automated testing of gui-driven software,” Autom.
Softw. Eng., vol. 21, no. 1, pp. 65–105, 2014.

[3] E. Alegroth, M. Nass, and H. Olsson, “Jautomate: A tool for system-
and acceptance-test automation,” in Software Testing, Verification and
Validation (ICST), 2013 IEEE Sixth International Conference on, March
2013, pp. 439–446.

[4] T. E. J. Vos, P. M. Kruse, N. Condori-Fernández, S. Bauersfeld, and
J. Wegener, “TESTAR: Tool support for test automation at the user
interface level,” Int. J. Inf. Syst. Model. Des., vol. 6, no. 3, pp. 46–83, Jul.
2015. [Online]. Available: http://dx.doi.org/10.4018/IJISMD.2015070103

3http://innovationalliance.eu

