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1
SUMMARY

Refactoring as a process can positively influence the maintainability of a software prod-
uct, however, refactoring software can be considered as a hazardous activity. To recognize
the hazards involved in the refactoring process requires specialistic skills, experience, and
knowledge. An automated refactoring guidance tool could assist in training these skills and
competencies.

The current refactoring process consists of performing refactoring steps which are con-
cluded by compile-and-test steps to detect introduced errors. These introduced errors can
be caused by invisible hazards which need to be understood and recognized. How can the
impact of these underlying, and invisible hazards be reduced?

To reduce the impact of these hazards, the refactoring steps should be made smaller.
These smaller steps, called microsteps, will have a lower impact and will have fewer haz-
ards. As a consequence, the verification of the compile-and-test stage can no longer be
performed. How can this compile-and-test stage be replaced?

A new mechanism replaces the compile-and-test stage and provides an advice. Soft-
ware harm can occur when a microstep is performed in combination with the presence
of a hazardous code fragment. Each microstep can have multiple hazardous code frag-
ments and each hazardous code fragment can have numerous variations. How can haz-
ardous code fragments, and their variations, be described in a flexible, understandable,
and reusable manner?

A new query language, which is based on the Abstract Syntax Tree (AST) representation
of the source code, has been developed to solve this problem. This query language uses
hazardous code pattern descriptions to accurately detect potential software harm in a pro-
gram under refactoring. How can a customized refactoring advice be generated to prevent
software harm during refactoring activity?

An advice mechanism is designed to collects facts from the source code entity. These
collected facts are provided by detectors that use the hazardous code pattern descriptions.
By using this method, a very detailed advice is provided to the refactorer.

The concepts of this study are validated by a pen and paper exercise. These results show
that the provided abstract solution works.
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2
SAMENVATTING

Refactoring als proces kan de onderhoudbaarheid van een software product positief beïn-
vloeden, echter moet het refactoren van software wel worden gezien als een gevaarlijke
activiteit. Om deze gevaren, welke betrokken zijn bij het refactoring proces, te kunnen
herkennen zijn specialistisch vaardigheden, ervaring en kennis benodigd. Een automa-
tisch refactoring tool zou ondersteuning kunnen bieden om deze ervaring en kennis en
trainen.

Het huidige refactoring proces bestaat uit het uitvoeren van refactoring stappen welke
worden afgesloten met compile-en-test stappen om zo te kunnen controleren of er fouten
zijn geïntroduceerd. Deze geïntroduceerde kunnen worden veroorzaakt door meerdere
onderliggende- en vaak onzichtbare gevaren die begrepen en onthouden moeten worden.
Hoe kan de impact van deze onderliggende, en onzichtbare gevaren worden verkleind?

Om de impact van deze gevaren te verkleinen, moeten de refactoring stappen worden
verkleind. Deze kleinere stappen, genaamd microstappen, zullen een kleinere impact en
minder gevaren hebben. Echter, een consequentie van deze microstappen is dat de verifi-
catie van de compile-en-test stap niet meer kan worden uitgevoerd. Hoe kan deze compile-
en-test stap worden vervangen?

Een nieuw mechanisme vervangt de compile-en-test stap en geeft vervolgens een ad-
vies. Software beschadiging is een fenomeen dat kan optreden als een microstap wordt
uitgevoerd in combinatie met de aanwezigheid van een gevaarlijk code fragment. Hoe
kunnen gevaarlijke code fragmenten worden beschreven op een flexibele, begrijpelijke en
herbruikbare manier?

Een nieuwe querytaal, welke gebaseerd is op de abstracte syntax boom (AST) repre-
sentatie van de bron code moet dit probleem gaan oplossen. Deze querytaal gebruikt
gevaarlijke-code-patroon-beschrijvingen om zo nauwkeurig software beschadiging te kun-
nen detecteren. Hoe kan een op maat gemaakt advies worden gegenereerd om zo software
beschadiging tijdens refactoring te voorkomen?
Een adviesmechanisme welke feiten uit de broncode verzamelt is hiervoor ontworpen.
Deze verzamelde feiten worden geleverd door detectoren die de gevaarlijke-code-patroon-
beschrijvingen gebruiken. Door deze methode te hanteren, kan er een zeer gedetailleerd
advies aan diegene die de refactoring uitvoert worden verstrekt.

De concepten van deze studie zijn gevalideerd met een pen-en-papier opdracht. De
resultaten hiervan tonen aan dat deze abstracte oplossing werkt.
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3
INTRODUCTION

There is high market pressure to produce software products as fast as possible and fix issues
with the software product later. Maintaining sufficient software quality combined with on-
going changing product requirements forces a higher focus on the software maintenance
process[Fuggetta and Di Nitto, 2014].

The maintainability of a software product can be positively influenced by a process
called refactoring. This process has been described as the refactoring activities in a study
by Tourwé and Mens [Tourwé and Mens, 2004]. These activities comprehend:

• The identification of where the software should be refactored.
• Which refactoring(s) should be applied to these identified places.
• A guarantee that the applied refactoring preserves behavior.
• Application of the refactoring.
• An assessment of the effect which the refactoring had on the quality characteristics

of the software.
• Maintaining consistency between the refactored program code and other software

artifacts.

An important activity in this list of activities is the guarantee of preserving behavior in the
third step. Preserving program behavior means that the initial functionality of a program,
after refactoring must be maintained [Tourwé and Mens, 2004]. However, before program
behavior preservation guarantees can be given, a proper diagnostic step should be per-
formed. This important diagnostic step is missing from their research.

4



The diagnostic step could aid the refactorer in detecting software hazards that are in-
duced by their refactoring actions. These hazards comprehend the chance of introducing
errors to the software. The current refactoring processes, like the one described by Fowler,
avoid hazardous refactoring situations. Understanding these hazardous refactoring situ-
ations is a difficult task since it requires multiple software engineering knowledge on an
expert level. Without this expert-level knowledge, it is much safer to choose not to per-
form hazardous refactoring, which implies that some software parts could remain to be
unrefactored. Code that remains unrefactored could suffer from architectural decay and a
decreased software maintainability.

An example of a hazard that is detected in the diagnostic phase of a refactoring, is when
a parameter will be removed from a Java method. A specific hazard that coincides with
such action is, that callers, which attempt to call the changed method, will no longer work.
In this case, the compiler will flag that these callers have a parameter too much in their pa-
rameter list. However fixing this, by changing all related callers could introduce a cascade
of new issues. Like dynamic binding issues via the superclass and siblings of that subclass
that became non-functional and all due to a single deletion of one of the parameters from
a method definition. When this hypothetical situation occurs in real program code, that
program code has become harmed. Detection of these refactoring induced hazards can be
quite complicated and it requires:

• Intensive knowledge about the programming language.
• Thorough knowledge about the source code and its interrelations.
• An awareness of code combinations that can cause issues.

These competencies and skills can be trained by learning software refactoring on the job,
with the help of a refactoring expert. However, to remain compliant with the ever-expanding
software market, more and more refactoring experts are needed. An automated refactoring
guidance tool seems a promising educational alternative to this high demand for refac-
toring experts. Besides the educational aspect, an automated refactoring guidance tool
could aid the professional programmer too, since more and more existing software needs
to be refactored nowadays. Considering that this existing software is often developed by
others, a diagnostic refactoring tool could certainly help the programmer during the com-
plex refactoring process. Some Integrated Development Environment (IDE)’s like eclipse
already offer some sort of automated refactoring mechanism, which performs refactorings
as a one-step fire-and-forget action. These tools could ease the refactoring process, but the
lack of a proper diagnostic process and the lack of a possibility to execute the refactoring
step-by-step are big drawbacks.

A study by Patrick de Beer, showed that an automated tool could help as guidance dur-
ing software refactoring. A specifically tailored tool was composed out of a so-called Refac-
toring Advice Graph (RAG) and addressed a small and testable set of refactorings. His work
creates a vast understanding of the automated refactoring guidance- process and aspects
in general [Beer, 2019]. However, a concern on the usage of the RAG’s used in his tool is that
these are difficult to understand and it is therefore complicated to produce new RAG’s for
other refactorings.

Our contribution will be to find a method that provides refactoring advice deduced
from a diagnostic step. This method has to be flexible, simple, reusable, self-explanatory
and it should elaborate on the functional part of the work done by Patrick de Beer. The
diagnostic step should provide the facts necessary to provide useful refactoring advice for
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the refactorer. An example of an advice could be to skip a refactoring, because in the source
code under refactoring a fragment of code has been detected that is hazardous in combi-
nation with the current performed refactoring action. The harm to the software, which is
caused if the advice is neglected, is a program preservation break failure. Besides advice,
a possible alternative to the above-described situation should be offered, but it should be
kept in mind that an alternative is not always possible. To provide refactoring advice, facts
have to be collected from the entire problem context, which includes the source code under
refactoring, the refactoring steps with their inflicted problems, and a list of code combina-
tions that cause issues for that refactoring-step inflicted problem. The contributions this
research will provide are:

• A transformation of Fowler’s refactoring mechanic steps into microsteps.
• A list of hazards per microstep.
• A list of each of these hazards accompanied with their hazardous code pattern descrip-

tions.
• A flexible method or recipe to detect hazardous code fragments in a source code entity.
• A method to combine separately detected software harm into a final composite advice.
• A validation of the concept.

In this thesis chapter 4, will describe the related work. Chapter 5 describes the first anal-
ysis. Chapter 6 discusses the research questions and chapter 7 will present the research
results. Chapter 8 will present the conclusion and is followed by chapter 9, which presents
the recommendations and future work.
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4
RELATED WORK

The work described in this chapter is meant to elaborate on the current research on refac-
toring guidance and on the refactoring process itself. This section will also provide missing
links or gaps in the existing literature that prevent the current known refactoring processes
to provide the necessary diagnostic step as described in the introduction. The first section
will focus on the work on automated refactoring guidance done by Patrick de Beer, the sec-
ond section will focus on the work done by Martin Fowler and the third section will focus
on the work done by William Opdyke.

4.1. AUTOMATED GUIDANCE IN THE REFACTORING PROCESS
Patrick de Beer presented an automated refactoring tool that uses a feed-forward mech-
anism to generate a refactoring advice based on the code context and with the help of a
so-called RAG. This RAG is a directed graph used as a decision tree that combines code
context, code-property detectors, and advice templates to generate the refactoring advice.
However, each refactoring requires a dedicated RAG, so there is very little future reuse. The
more complex the refactoring becomes, the more complex the accompanied RAG will be.
The prototype presented in the study worked well for a specific refactoring however, the
increasing complexity of the RAG’s is a concern. [Beer, 2019]. Despite the drawbacks of
the RAG, the tool demonstrated that a refactoring advice can be provided on a feedforward
basis with an automated tool.

4.1.1. PROGRAMMING PROBLEMS SOLVED IN THE RAG
To prevent the automated refactoring tool from ending up in a deadlock, the software
implementation demands that all branches in the RAG must be conjugated by a negated
branch [Beer, 2019]. This eases the software implementation, but it will make the RAG so-
lution more complex. This added complexity makes it difficult to expand the RAG since
it will lead to a strong increment of empty advice branches, as can be seen in the empty
advice nodes in figure 4.1. Another restriction is that each node in the RAG must provide
advice, even when no advice is necessary, which is the reason for these empty advice-nodes
in the RAG. This bounds the RAG’s to a specific refactoring and minimizes its reuse.
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Figure 4.1: An extract-method RAG

4.1.2. NO RECIPE FOR GENERATING NEW REFACTORINGS
Another concern is the lack of a proper recipe to construct these RAG’s, which makes it
complicated to understand existing RAG’s and makes it even more complicated to produce
new RAG’s for other refactorings. The study done by Patrick de Beer does not provide a
solid base to recreate a proper recipe for creating new RAG’s for other refactorings.

4.2. REFACTORING AS A PROCESS DESCRIBED BY MARTIN FOWLER
Martin Fowler eased the refactoring process by introducing refactoring mechanics as a
step-by-step recipe, with some minimal diagnostics to perform specific refactorings. How-
ever, the majority of these mechanics contain vague directives, where instinct is a necessary
ingredient. This refactoring-instinct, mentioned by Fowler, is not a clear definition of skill.
Fowler states that experienced refactorers will make the right decision instinctively, which
implicates that refactoring experience is a necessity [Fowler, 1999].
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4.2.1. VAGUE DIRECTIVES IN THE MECHANICS BY FOWLER
Fowler’s mechanics sometimes contain vague directives and are multi-interpretable. Fowler
states that these vague directives often concern difficult refactoring situations with dif-
ficult decisions to make. These vague descriptions can therefore not be stated as exact
steps within the mechanics. An example of these vague directives can be found in the in-
line method mechanics, figure 4.2, where the mechanics are presented in a simple and
straightforward step-by-step way. However, a remark concludes that these mechanics are
not easy to perform and can provide lots of difficulties that are not described and that if you
run into these undefined complexities, you should not perform this refactoring. Another
refactoring-mechanic of interest can be found in appendix B where the "Add a parameter
to method" mechanic is multi-interpretable. When wrongly interpreted, these mechanics
will not be program behavior preserving. As a consequence refactoring activity could fail,
due to these directives. Therefore it is important that the directives in Fowler’s mechanics
are well described and that they are unambiguous.

Figure 4.2: Fowler’s mechanics for inline method

4.2.2. UNADDRESSED HAZARDS IN THE REFACTORING PROCESS
Refactoring software involves the chance of introducing errors, which makes refactoring
a complicated and hazardous activity. Recognizing these hazards demands expert knowl-
edge and refactoring experience during refactoring activities. From current literature, it
is unclear what specific hazards are involved with certain refactorings. Often, as an al-
ternative in the refactoring mechanics, the solution offered is to stop and avoid the cur-
rent refactoring activity. The complication of these unaddressed hazards is that refactoring
efforts could eventually lead to unsuccessful refactoring attempts, by introducing errors
in the program code. These unsuccessful attempts combined with the complexity of the
refactoring process will probably negatively affect the willingness to perform refactorings
in the future. The awareness for refactoring hazards can be increased by accurately speci-
fying what hazards are involved with certain refactorings.
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4.3. PROGRAM BEHAVIOR PRESERVATION AS DESCRIBED BY WILLIAM

OPDYKE
A study by Opdyke explained that specific preconditions of refactorings can ensure pro-
gram behavior preservation. To proceed with automated refactoring, the preconditions
must be met. If one of the preconditions of that refactoring is not met, program behavior
preservation for that specific refactoring cannot be guaranteed and the refactoring should
be avoided [Opdyke, 1992].

4.3.1. PROGRAM BEHAVIOR PRESERVATION DETECTION BY USING SPECIFIC PRE-
CONDITIONS FOR REFACTORINGS

A troublesome refactoring can be seen in figure 4.3, where a rename method refactoring is
performed on a function F2 in the subclass. The function F2 will be renamed to function
F1. After the refactoring, function F3 will call the newly declared function F1 in the local
class, instead of the function F1 from the superclass. Which leads to a break in program
behavior after the refactoring took place.

Figure 4.3: The erroneous renaming of member function F2 [Opdyke, 1992]

An example of a precondition that would not have been met before this troublesome refac-
toring takes place, is the pre-condition below in equation 4.1. To simplify this example, the
assumption is made that F1 is the new name of the method.

8member 2 commonSuperclass.locallyDefinedMemberFunctions,member.name 6˘ F1.name.
(4.1)

This pre-condition will not be met when it is applied to the example from figure 4.3, since
the name of function F1 in the superclass and the new name of function F2 ( which will
be F1 ) is the same. In this example, only one precondition is used for demonstrational
purposes, but it would take a list of preconditions to test for the behavior preservation of
the example in figure 4.3 [Opdyke, 1992]. Instead of following Opdyke’s suggestion to skip
a troublesome refactoring, a tailored solution in the form of an advice should be offered
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instead. With enough insight and a proper advice, troublesome refactorings which should
be skipped according to Opdyke, could be performed without issues.
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5
FIRST ANALYSIS

This section provides new insights on the subjects and will provide information that is
needed to improve the comprehensibility of this subject. These insights are artifacts of the
performed study and are not found in the literature. This section will elaborate on the is-
sues with the hazards of refactoring and how the impact of refactoring can be decreased. A
diagnostic process will be introduced, which establishes the terms and definitions that will
be used in this study. This section will also elaborate on the cause of the hazards induced
by refactoring activity.

5.1. LOWERING THE IMPACT OF REFACTORING ACTIVITY
Big composite, or coarse-grained, refactoring steps have a higher negative impact in case of
problems and vice versa. The current size of the refactoring steps provided by Fowler’s me-
chanics is not small enough. There is a need for smaller, fine-grained refactoring steps with
less impact compared to the more coarse-grained refactoring steps from Fowler’s mechan-
ics. Since each step in the mechanics must be program behavior preserving, the majority
of Fowler’s mechanic steps cannot be made smaller than they currently are. With current
coarse-grained refactoring steps, a mechanic step can comprehend multiple hazards. For
an accurate and more precise description of hazards, there is a need for smaller and more
fine-grained refactoring steps.

5.1.1. REDUCING THE GRANULARITY OF THE MECHANIC REFACTORING STEPS

TO MAKE A MORE PRECISE DESCRIPTION OF HAZARDS POSSIBLE
With the current coarse-grained granularity of Fowler’s mechanic refactoring steps, an ac-
curate description of hazards is difficult since the hazard granularity is also coarse-grained.
In the case of an error, it becomes difficult to isolate the root cause of the problem, since a
single problem can have multiple causes involved. Fowler’s mechanics steps should prefer-
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ably be divided into smaller steps with lower impact, and these step should produce code
which is still understandable and human-readable.

Figure 5.1: Anatomy of refactoring steps, its code correctness, its impact, its hazard granularity, its readability,
and its understandability

Figure 5.1 presents a breakdown of possible refactoring steps with varying step size. The
granularity of these refactoring steps is derived from the model in figure 5.2, which repre-
sents the block diagram of a generic compiler that produces byte-code.

Figure 5.2: A block diagram, with an intermediate output description of the elements of a compiler that pro-
duces bytecode.

This study used the stages of the compiler to define the predicates for the source code un-
der compilation. These predicates are:

• Behavior Preserving. Code that can be compiled without problems. This code
is readable, understandable, and does not need correction to successfully com-
pile. This code is lexically, syntactically, and semantically correct and this code
has unchanged behavior. Which means that the behavior of the code is main-
tained.

• Semantical correct. Code that can be compiled without problems. This code
is readable, understandable, and does not need correction to successfully com-
pile. This code is lexically, syntactically, and semantically correct.

• Syntactical correct. This code is readable, understandable, and might need
some semantical correction to successfully compile. This code is lexically, and
syntactically correct.
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• Lexical correct. This code could contain syntactical errors and/or semantic
errors. This code is lexically correct and might need syntactical and semantic
corrections to compile.

• Undefined code. Not lexically correct "code" can represent anything, like ran-
dom sequences of characters.

To further explain what these predicates mean, examples of errors are given in Table 5.1
below.

Error types Example Comments
Semantical error int i="string"; int and string are not compatible
Syntactical error int i Colon is forgotten
Lexical error int void=0; void is a reserved keyword.
Undefined code *anything* This can be anything, like random characters, as

long as the lexical scanners do not detect tokens.

Table 5.1: Error types with code example and comments

5.1.2. MICROSTEPS
If performed correctly, Fowler’s refactoring mechanics are semantically correct and can be
tested by a successful compilation. If the refactoring mechanics are performed correctly,
these steps do not introduce lexical, syntactical, and/or semantic errors and are behavior
preserving. If Fowler’s refactoring steps need to be divided into smaller steps, it is logical
that the size of these steps follows the predicates from the model in 5.2. If they would not,
then the new smaller refactoring steps, even in compositions, would yield code that cannot
be compiled nor tested. Refactoring steps that produce lexically correct code can still be
syntactically incorrect on their own, which is undesirable. Refactoring steps that produce
syntactically correct code, can still be semantically incorrect. An example, if a microstep
adds a method to a specific scope where a similar method is already present, then this
is syntactically correct but semantically incorrect. However, the subsequent microsteps
should provide for semantical correctness. Therefore, if composed correctly from Fowler’s
refactoring mechanics, the correct composition of microsteps will produce semantically
correct code. Modifying software, by performing microsteps, can lead to problems with the
software, like the introduction of errors.

Definition 5.1.1

A microstep: A small refactoring step that produces syntactically correct code, but
it is not behavior preserving. This smaller refactoring step is a derivate of Fowler’s
mechanic refactoring steps. The correct composition of one or multiple microsteps
replaces the mechanic’s steps from Fowler where the impact of the composite refac-
toring remains the same. However, since the microsteps on their own have a much
smaller impact, the hazard definition is less compound per performed refactoring
action. A microstep yields code that can be successfully parsed. After parsing, an
Abstract Syntax Tree (AST) is produced. Performing a microstep on a source code
under refactoring is a hazardous activity.
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5.1.3. TRANSFORMING FOWLERS MECHANICS INTO MICROSTEPS
A microstep is similar to a step in the refactoring mechanics. A microstep can act on a sub-
ject, where the action can either be adding, removing, or renaming. The subject can be
either a class, an attribute, a method, an interface, or a parameter. However, a microstep is
a much smaller step, with less impact than a refactoring mechanic step. Checks like "com-
pile and test" and other tests are excluded. A table with possible microsteps is presented in
Table 5.2 below.
Without transforming the refactoring mechanics into microsteps, a proper diagnostic pro-
cess that provides insight into the induced hazards will be very difficult. By using mi-
crosteps, the program behavior preservation for these introduced microsteps can no longer
be guaranteed, but the granularity of the microsteps makes an accurate and precise defini-
tion of these hazards possible.

Microstep Class Attribute Method Interface Parameter
Add
Remove
Rename

Table 5.2: Microsteps with subjects. This table is supposed to be empty.

A typical refactoring step from Fowler’s mechanics consists out of multiple microsteps.
An example is the refactoring mechanic step "Rename Attribute". A microstep transforma-
tion of this mechanic step would consist out of two steps: "Remove Attribute" and "Add
Attribute." Both "Remove Attribute" and "Add Attribute" microsteps have their own set of
associated hazards, which were previously combined into one composite mechanic refac-
toring step. This makes the definition of possible hazards for each microstep less difficult.

5.2. DEFINITION OF THE DIAGNOSTIC PROCESS
Since the diagnostic process in software refactoring is a new concept, clear and harmonized
terms that define the diagnostic process are missing from the literature. This research re-
quires clear and harmonized terms to define the diagnostic process. To help to harmonize
and to define these terms and definitions, the ISO-14971 is adopted. This standard has
its origin as a descriptive definition of risk-management terms for medical devices [ISO-
14971, 1998] and the terms defined in this harmonization are assumed to apply to the di-
agnostic process used in this research. Therefore the terms and definition of this standard
will be used and will be applied in a software refactoring context. We isolate the four main
terms from the ISO-14971 harmonization:

• Hazard - Something that has the potential to cause harm.
• A hazardous situation - A circumstance that exposes an entity to one or more hazards.
• Harm - Damage that is caused to an entity as a consequence of a hazard.
• Risk - The probability of the occurrence of harm and the severity of that harm.

The following sections will now address these important new terms, which are applied to
the software refactoring process.
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5.2.1. SOFTWARE HAZARD
Changes made to software have the potential to cause harm to software. When changes are
made the chance that bugs or errors are introduced is increased and it may lead to software
hazard. These changes could lead to software hazards like non-working software or even
software defects. Even using the software can be hazardous when a user deviates from the
intended use of a piece of software. An example: A software tester that is seeking for bugs
or errors deviates from the intended use. The concerning hazard in this case, is that the
software fails due to a bug or error. An example, driving a car is also considered a hazard
and may lead to harm. Driving a car in the dark, tired, and without glasses is a cascade
of hazards that increases the chance of harm. A safe and hazards free situation has a low
amount of manageable hazards, while a safe situation without any hazard is fairly impos-
sible.

Typical software hazards are:
• Adding features to the software that is not open for extension.
• Deviation of use Software that is being used to its original intent. ie. using

software concurrently while it was not intended for concurrent use.
• Refactoring software. Rewriting software to change its maintainability.

- Performing a microstep within a refactoring. Performing microsteps on
a code under refactoring can be a hazardous activity.

Refactoring software is an activity where a hazard is introduced. Tracing bugs is detecting
hazards that are already present in the software in the form of bugs. Therefore, differentia-
tion between software hazards must be made:

• Hazard that is already present in the software, like software with bugs or soft-
ware that does not meet the open-closed principle.

• Hazard that is introduced to the software when a refactoring is performed and
the hazard was not present before the refactoring activity.

Definition 5.2.1

A software hazard: presents a risk or threat to the software due to an activity that
is associated with the use of software, or that is associated with making changes to
the software. Activities like refactoring introduce new hazards while adding features
to the software that is not open for extension reveals already present hazards in that
software.
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5.2.2. SOFTWARE HARM
When software becomes damaged, software harm occurs. Damaged software needs repair
to restore its original functionality. Software harm has a severity level and a type.

Example of severity levels are:
• Severity can be stated as:

- No severity, like no error.
- Minor, like introducing overloading in a class or compiler warnings.
- Low, like introducing a compiler and/or runtime error.
- Major, like introducing program behavior preservation break.

Examples of types of harm that can be caused to the software are:
• Inconveniences like compiler warnings that do not cause issues. No severity.
• Errors in the software that prevent the software from a successful compilation

or errors that prevent the software from entering its running state. This is a low
severity.

• Software defects like program behavior preservation breaks. This is the case
when the software has unintended different behavior or functionality after the
refactoring activity. This is a major severity.

An example: when the microstep remove method is performed on a code under refac-
toring and callers to that method are still present and unaware of the removal of the method.
Performing this specific microstep on this code under refactoring will damage the software.
The harm caused will be a compile error with low severity.

Definition 5.2.2

Software harm: Damage that is done to the software, like the introduction of com-
piler warnings, errors, or software defects.
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5.2.3. HAZARDOUS CODE PATTERNS
Figure 5.3 represents a concrete example of a hazardous code pattern, together with the
code context and the refactoring subject. The hazardous code pattern in this example is a
fragment of statements and definitions from the code of a concrete program. These con-
crete patterns will be referred to as (concrete) hazardous code fragments. Although the
word "fragment" is not 100% descriptive, it is close enough.
The refactoring subject is the single subject that is being refactored by a microstep (under-
lined in the figure). This subject can be found in table 5.2 on the horizontal axis. The code
context is the entire code and everything associated with the code to make it functional.
The hazardous code fragment consists out of multiple subjects (printed boldly in the fig-
ure) that can have relations with each other. The relationship between the subjects of a
hazardous code fragment is not directly visible and needs effort to comprehend.
Example: methodB in the superclass is a subject that is a part of the hazardous code frag-
ment, but it is in another class.
An important notice, subjects that are part of the hazardous code fragment do not have to
be in the close vicinity of the refactoring subject. In the hazardous code fragment in figure
5.3 the subjects with their relationships form a pattern, although this pattern is not directly
visible from this representation.

Figure 5.3: A refactoring subject, the code context, and a concrete hazardous code pattern

The presence of other code in the code context, in figure 5.3, is not of interest to the
description of this specific hazardous code fragment. This hazardous code fragment con-
cerns the fact that there is a child class B of a superclass A, which has a method call to a
method B with a parameter of the type int which is declared in the superclass A. If the mi-
crosteps remove method (subject methodB(void) and add method (subject methodB(int)
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is performed on the subject under refactoring in figure 5.3 then software harm can occur.
To detect a (concrete) hazardous code fragment in program code, a description of a pat-

tern consisting out of specific code characteristics that describe all possible tolerated vari-
ations on these concrete hazardous code fragments is necessary. An example of tolerated
variations that can occur in these hazardous code fragments is: varying class names, vary-
ing method names, or code that is in between statements, etc. An example of an intolerable
variation can be seen in figure 5.3, which is the location of the caller MethodB(100) resid-
ing in the subclass B. These patterns consist of specific code characteristics that describe
hazardous code fragments that will be referred to as hazardous code pattern descriptions.
Microsteps have their own unique and limited list of hazards and each hazard has its list of
hazardous code pattern descriptions. The hazardous code pattern descriptions will have
to match all tolerated varieties of code fragments. Therefore, a method to create hazardous
code pattern descriptions that describe all tolerable variations of concrete hazardous code
fragments in a generic code context is necessary.

Definition 5.2.3

Hazardous code fragments: The hazardous code fragment is a fragment of state-
ments and definitions from the code of a concrete program. These statements and
definitions are facts that are collected from the source code entity.

Definition 5.2.4

Hazardous code pattern descriptions: A description of a pattern that consists of
specific code characteristics that describes all possible tolerated variations on a con-
crete hazardous code fragment. These hazardous code pattern descriptions are nec-
essary to detect hazardous code fragments in a generic source code entity.

5.2.4. POTENTIAL SOFTWARE HARM
The probability that harm is caused to software depends on the right circumstances. These
circumstances can be defined as trigger-events. Trigger-events consist of a sequence or
combinations of events. Since the behavior of software is similar to discrete mathemat-
ics, the occurrence of harmful-trigger-events follows a binary behavior. In our research,
harmful-trigger-events are defined as a pair that consists out of a microstep and its accom-
panying hazardous code pattern description.

Definition 5.2.5

Harmful-trigger-event: a pair that consists out of a microstep and its accompanying
hazardous code pattern description.

The occurrence of these harmful-trigger-events can be very accurately measured by re-
trieving them from the software and refactoring actions. If an occurrence of a harmful-
trigger-event is detected, then harm is considered to be present. If its presence is not mea-
sured, no induced harm is considered to be present.
The formula for software harm can therefore be written as:

SoftwareHarm ˘ Presence(harmful_trigger_event) £ Severity (5.1)
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• Presence(harmful_trigger_event) depends on:
- The discrete presence (yes/no) of a harmful-trigger-event. A harmful-

trigger-event, a microstep, and its accompanying hazardous code pattern
description.

Definition 5.2.6

Potential software harm: The product of the discrete presence of an harmful-
trigger-event and the severity of the harm caused by this trigger-event. The presence
of a harmful-trigger-event has a binary representation, which is either zero or one. If
a harmful-trigger-event is detected (1), software harm will happen and the harm will
be equal to the severity. If a harmful-trigger-event is not detected (0), the induced
harm will be equal to zero, which is no harm.

5.2.5. DESCRIBING SOFTWARE HARM WHICH IS INDUCED BY REFACTORING

ACTIVITY
Fowler’s mechanic steps form a guideline through the entire refactoring process. All steps
in that refactoring process are initiated and directed from that guideline. Transforming
these mechanics steps into microsteps, helps to define the accompanying harm of a mi-
crostep more precisely. It should be intuitively known that some microsteps like the "delete
method" microstep have the potential to cause software harm. By experiment, it became
known that some microsteps are prone to cause software harm when applied to a specific
hazardous code fragment. Therefore, it is important to notice that it is the microstep that
initiates the software hazard. The pair existing out of a microstep and its accompanying
hazardous code pattern description forms the harmful-trigger-event. Without knowing all
the harmful-trigger-events that can cause software harm, refactoring will remain a haz-
ardous exercise. To reduce the chance of causing software harm during refactoring activity,
the presence of hazardous code fragments, which is corresponding to the performed mi-
crostep, needs to be detected in the source code entity. To prioritize the software refactor-
ing risks, the severity of the harm needs to be specified as well as can be seen in formula 5.1.

To describe and to detect potential software harm there is a need for:

• The harmful-trigger-event consisting of:
• A microstep - The microstep that could cause software harm.
• A description of a hazardous code pattern description that accompa-

nies the hazard of the microstep - A hazardous code pattern description,
so that the hazardous code fragment can be detected in the source code
entity.

• The potentially caused software harm consisting out of:
• The type of software harm caused. What type of harm is caused, like a

compiler warning.
• The severity of that software harm caused. What is the severity of the

harm, like having unused variables after refactoring.
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5.2.6. DESCRIBING CONCRETE HAZARDOUS CODE FRAGMENTS WITH HUMAN

LANGUAGE
To detect software harm, during a refactoring step, the hazardous code pattern description
of a hazardous code fragment should be known. The purpose of these hazardous code pat-
tern descriptions is to detect hazardous code fragments in the source code entity. During
this research, the presence of numerous hazardous code fragments was manually detected
in several code examples. Multiple hazardous code fragments were successfully identified
and attempted to be transformed into hazardous code pattern descriptions. However, de-
scribing hazardous code fragments in natural human language is difficult. Transforming
these hazardous code fragments into hazardous code pattern descriptions is even more
challenging.

As a consequence of not being able to create hazardous code pattern descriptions, it
becomes difficult or even impossible to recognize hazardous code fragments in the source
code entity. The consequence of not being able to recognize these hazardous code frag-
ments is that the detection of potential harm during refactoring will be difficult or even
impossible. To perform a proper diagnostic step where the potential harm can successfully
be detected, a method to describe hazardous code patterns and how to detect hazardous
code fragments is necessary.

5.2.7. WHY A DESCRIPTION OF CONCRETE CODE FRAGMENTS IN HUMAN LAN-
GUAGE IS DIFFICULT

To describe the problem of describing code fragments in human language, a simple code
example is presented in figure 5.4 which will be used in the code fragment descriptions
below. Since this is a code description, which is not hazardous (yet), it will be referred to as
a code fragment.

Figure 5.4: A simple code example with inheritance

There is no standard, nor literature which explains how to describe code fragments.
During experimental exercises, experience was gained in how code fragments can be de-
scribed in a structured way. An attempt with normal sentences to describe the code frag-
ment is presented below:

"(1)In a situation where there are two public classes from which one is (2) a superclass
with name ClassX and the other is the subclass of ClassX with the name ClassY and (3) there
is a public method with the name testMeX in ClassX which does not return a value and that
has an empty body. (4) There is also a public method with the name testMeY in ClassY that
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does not return a value and that accepts a parameter of type int (6) and that has an empty
body."

This attempt to describe the code fragment is difficult to comprehend and is too spe-
cific. For a new attempt, observe the listed version of the code fragment description below:

1. There are 2 classes in total.
2. There is a public superclass with the name ClassX and there is a public subclass of

ClassX with the name ClassY.
3. ClassX contains one public method with the name testMeX which accepts a parame-

ter of the type int and the method does not return data.
4. ClassY contains one public method with the name testMeY which accepts a parame-

ter of the type int and the method does not return data.
5. Method testMeX has an empty body.
6. Method testMeY has an empty body.

Both examples describe the same entities and the relations between entities, in both ex-
amples the subjects are linked together by the numbers 1 to 6. In these descriptions, the
overall situation is described in (1), which describes that there are 2 classes. Then in (2), the
classes and their relationships with each other are described. In (3) and in (4), the entities
inside the classes are described and in (5) and (6), the methods which have empty bodies
are described.

Although both descriptions correctly describe the same example, it was found by ex-
periment that the listed version of the code fragment description is much easier to com-
prehend than the sentenced version. The reason for this effect is that the listed example
describes the hierarchy of the code fragment vertically. Understanding the relation of the
lowest entity with the other entities means reading upwards, while the sentenced version
of the description requires memorizing, sketching, and repetitive rereading. Second, the
sentenced version is suffering from language constraints as well. The sentences must be
grammatically correct, which is a major drawback. The listed version also suffers from
language constraints, but because the sentences are much smaller, this drawback has less
effect on comprehensibility. It is important to retrieve a method that can describe the rela-
tions between the entities of a source code fragment and one that is not bound by language
constraints.
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6
RESEARCH METHOD

6.1. MAIN RESEARCH GOAL
The focus of this study is to find a flexible method that provides a refactoring advice based
on the performed refactoring activity and the source code under refactoring. The refactor-
ing activities consist out of performing microsteps, while the advice will be based on the
possible software harm that can be caused by the performed microstep and its accompa-
nying hazardous code fragment.

The main research question: How can we provide refactoring advice based on: the
performed refactoring activity, and the source code under refactoring?

6.2. DESCRIBING HAZARDOUS CODE FRAGMENTS
Describing hazardous code fragments in natural language is difficult, therefore a new com-
prehensible method to describe hazardous code fragments needs to be designed. Which
will be the first research question of our study:

RQ1: How can a hazardous code fragment be described in an easy to comprehend
manner?

6.2.1. APPROACH
To solve the issue of describing the hazardous code fragments, a proprietary and abstract
query language is developed. This language forms the foundation for the other research
questions and is bottom-up designed with previously addressed requirements, like flexi-
bility, comprehensibility, and reuse build-in.

6.2.2. VALIDATION
The concept of this study, including the answers of RQ1, will be validated with a pen and
paper exercise, which will be presented in this thesis in chapters 7.3.3 and 7.3.4.
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6.3. MICROSTEP INDUCED HAZARD
Induced hazards should be specified per microstep. During refactoring, possible software
harm is caused when a harmful-trigger-event is detected in the source code entity. To
make it possible to detect possible software harm, there is a need for a list of hazardous
code pattern descriptions which is accompanied by each hazard that a microstep has. It is
important to notice that during the performance of a microstep, positive detection of the
accompanying harmful-trigger-event for that microstep, will lead to software harm. So, a
harmfull-trigger-event should be specified by the harm which it causes. A microstep on its
own will be a hazardous activity, so it is logical to specify the hazards per microstep. Which
is the basis for the second two research questions:

RQ2: How can we transform Fowler’s refactoring mechanic steps into microsteps?

RQ2.1: What will the hazard(s) of a particular microstep be?

RQ2.2:Which hazardous code pattern descriptions are needed for each
microstep’s induced hazard to detect potential software harm?.

6.3.1. APPROACH
A large number of refactorings described by Fowler were used to retrieve the majority of
these hazards. The mechanics were first translated into microsteps, since the hazards need
to be specified on a microstep level. Next, the microstep induced hazards were used to
retrieve the hazardous code pattern descriptions. The hazardous code pattern descriptions
are described with the use of the query language from RQ1.

6.3.2. VALIDATION
The concept of this study, including the answers of RQ2, RQ2.1, and RQ2.2 will be validated
with a pen and paper exercise, which will be presented in this thesis in chapters 7.3.3 and
7.3.4.

6.4. A FLEXIBLE DETECTION MECHANISM TO DETECT FOR PO-
TENTIAL SOFTWARE HARM

This research will focus on providing a flexible mechanism to achieve the detection of po-
tential software harm during refactoring activity. The mechanism will also provide an ad-
vice with suggestions to solve an issue. The mechanism will avoid hard-wired solutions.
The outcome of RQ1 will provide a steady basis for the provided mechanisms in RQ3, where
flexibility, comprehensibility, expandability, and reuse are important parameters that are
designed bottom-up into RQ1. This leads us to the third and final research questions:

RQ3: How can hazardous code fragments be detected in a source code entity flexibly?

RQ3.1:How can multiple detected potential software harm be combined into
final composite refactoring advice?

24



6.4.1. APPROACH
For RQ3, the hazardous code pattern descriptions with their aliases are used to detect haz-
ardous code fragments. Further, the query language has been modified to communicate
what entities it has detected. The purpose of the added communication feature is to pro-
vide final composite refactoring advice. The abstraction of the query language easily allows
for these enhancements.

6.4.2. VALIDATION
The concept of this study, including the answers of RQ3, and RQ3.1 will be validated with a
pen and paper exercise, which will be presented in this thesis in chapters 7.3.3 and 7.3.4.

6.5. SCOPE OF THE STUDY
For this study, I will only focus on the programming language Java. Static analysis meth-
ods will be used, which means that polymorphism is excluded from this research. Further,
generic types, dynamic binding, and java reflection will also be excluded from this study
and some of these exclusions will be marked as future work.
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7
RESEARCH RESULTS

7.1. DESCRIBING CODE FRAGMENTS
When describing a single subject of a source code fragment solely, all relations with all
other subjects have to be described. In other words, describing a single subject requires a
description of the entire code context that is involved with that subject. By using another
representation of the code fragment, the relations between the subject of the code fragment
become much more clearer. The AST representation was found to be useful material to be
studied for this purpose. The AST represents the hierarchy of a source code ( fragment )
where the code is represented by edges and nodes in a tree.

7.1.1. DESCRIBING THE RELATIONS OF CODE CONSTRUCTS IN A SOURCE CODE

FRAGMENT WITH THE HELP OF AN AST REPRESENTATION

Figure 7.1: A simplified abstract syntax tree representation of the code from the example in figure 5.4

A highly simplified AST representation of the code example in figure 5.4 is presented
in figure 7.1. This figure uses boxes with dashed lines and a number in red which repre-
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sents the attempted description of the code example in chapter 5.2.7. The exact numbered
descriptions, from chapter 5.2.7 are repeated below:

1. There are 2 classes in total.
2. There is a public superclass with the name ClassX and there is a public subclass of

ClassX with the name ClassY.
3. ClassX contains one public method with the name testMeX which accepts a parame-

ter of the type int and the method does not return data.
4. ClassY contains one public method with the name testMeY which accepts a parame-

ter of the type int and the method does not return data.
5. Method testMeX has an empty body.
6. Method testMeY has an empty body.

The full-blown AST representation of this code fragment can be found in Appendix C
in figure 10 and is too large to be used as an example, therefore some details in figure 7.1
are highly simplified. Details like modifiers, return types, method parameter names are
left out of this example for simplification. The relations between the subjects in figure 7.1
are represented by lines/edges with a written description to simplify this representation.
The nodes describe code constructs from the source code, while the edges describe the
structure between these code constructs. ie. a code construct is a method declaration in
a source code, like the construct void methodname(void). These code constructs will be
further referred to as subjects when used in an AST context. Examples of subjects in an AST
representation are the definition of a class, a method, a field, etc. When a subject with a
relation is present in the simplified AST it automatically implicates that the code construct
is present in the source code as well. The edge between the subject ClassX and the subject
TestMeX in the AST representation describes the presence of a method TestMeX in Class
ClassX in the source code and so on. The hierarchy is presented in a top-down manner. The
subject with the highest hierarchy is the compilation unit. Second, are the classes and so
on. Subjects on the same horizontal level share the same hierarchy level. The advantage of
an AST representation is that the inner relational structure of a code fragment is quickly and
easily revealed. The disadvantage of an AST representation is that it hides the functionality
of the code fragment.

Definition 7.1.1

A subject: An node in an AST representation that can have a relation with other
nodes or which is a start node or a leaf. This node represents a code construct in
the source code.

Definition 7.1.2

A relation between subjects: The edges in an AST represent the relations between
the subjects. This relation represents the relation between code constructs in the
source code.
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7.1.2. DESCRIBING SCOPING IN A SOURCE CODE FRAGMENT WITH THE USE

OF AN AST REPRESENTATION
The scope in an AST representation is defined as the region where subjects can be bound
to an entity. That entity can be another subject, however the downward hierarchy of an
AST applies. So, there is no upward scope in an AST representation. An example of a scope
definition in an AST representation is the scope of the class with the name "ClassY". This
scope comprehends all subjects and relations below that class subject. Another example
is the scope of the method with the name "TestMeY" with comprehends all subjects and
relations below that method subject.

Definition 7.1.3

A scope: The scope in an AST representation is defined as the region where subjects
can be bound to an entity. That entity can be another subject, however, the down-
ward hierarchy of an AST representation applies.

7.1.3. ABSTRACTING AN AST REPRESENTATION TOWARDS A QUERY LANGUAGE
To accurately describe code fragments, the previously described findings need to be trans-
formed into a new query language that is based on an abstraction of the AST representa-
tion. Since the relations are already described by the edges of an AST representation there
is no need to additionally describe these.

SUBJECTS

The subjects can be described by specifying their name, ie. "TestMeY" or "TestMeX", as
represented in figure 7.2. It is important to mention that these subjects refer to the nodes
in an AST representation and not the code fragment itself. A problem arises when both the
classes "ClassY" and "ClassX" have methods with a similar name, only using the subject’s
name does not provide a unique reference to the correct subject in an AST representation.

Figure 7.2: A simplified abstract syntax tree representation with subjects

As can be seen in figure 7.2, the subjects "TestMeY" and "TestMeX" are "visible" re-
spectively in the scope of the node with the name "ClassY" and the node with the name
"ClassX."
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Figure 7.3: A simplified abstract syntax tree representation with scoping

SCOPE

In figure 7.3 two scopes can be observed, the "TestMeY" scope and the "TestMeX" Scope.
When combining both the scope and the subject description, an exact and unique descrip-
tion is established. In example 7.4 a unique reference to the correct subjects can be seen.
Describing the subject "TestMe" with scope "compilation unit" will refer to two subjects
in the AST in this example. A subject description can yield more than one subject in an
AST representation, which is not always desirable. In these situations, the scope is used to-
gether with the subject’s name. An exact reference to the method "TestMe" in the class with
the name "ClassY" will be referred to as subject "TestMe" in the scope of subject "ClassY".
If a scope can represent a collection of subjects, then specifying the subject together with
a scope represents the intersection of that subject with the collection of subjects that are
determined by that scope.

Figure 7.4: A simplified abstract syntax tree representation with subjects and their scope
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STATEMENTS TO DESCRIBE SUBJECTS AND SCOPES

The newly defined query language will make it possible to describe scopes and subjects
in an intuitive, short, and comprehendible manner. These descriptions reference the po-
sition of subjects and/or scopes in an AST representation. An example of a statement is,
method "TestMe" with scope "ClassY", which yields the node of method "TestMe" in the
subclass "ClassY" in the AST representation in figure 7.4. These descriptions of subjects,
scopes, and other newer elements in an AST representation will be further referenced as
(query language) statements. Statements produce a reference to an AST entity, which can
be perceived as an output.

Definition 7.1.4

A (query) statement: A description of entities in an AST representation, and which
yields subjects, scopes, or other entities.

THE OUTPUT OF A STATEMENT

The high level of abstraction of the query language provides for the necessary freedom to
make any design choice. The example of the previous section displayed that the statement
of the subject "TestMe" with scope "Compilation Unit" will refer to two subjects in the AST
representation in figure 7.4. One could think of a situation where a statement will yield no
subject or a situation where a statement will yield multiple subjects. An important design
choice is that a statement can yield nothing, one entity, or multiple entities. An example of
a statement’s output is the node "TestMe" in the scope of class "ClassY".

Definition 7.1.5

The output of a statement: A statement yields a list of entities in an AST representa-
tion which represents no entity, one entity, or multiple entities.
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PIPELINING OF STATEMENTS

When statements yield output, it should be possible to cascade separate statements to en-
hance the readability of the statements. Another important effect of cascading statements
is that the reuse of statements will become possible. It is the reference to nodes in the
AST that is communicated, which is a design choice that makes recursion, and real-time
assessment of the pseudo-AST elements possible. These references can then be used for
further examination by the next statement in the pipeline. An important design choice (
implementation ) is that the information output of each detector should be transparently
transmitted through, or beside a detector. This transparent stream of information is neces-
sary to delay the decision-making process to the last possible moment [Stuurman, 2015].

Definition 7.1.6

Pipelining of statements: A statement can be used as input for another statement.
Statements can "communicate" via their produced output. The purpose of pipelin-
ing is to increase the comprehensibility and to increase the reusability of statements.

STATEMENT ALIASES

Since statements must be easy to comprehend and reuse of statements should be stim-
ulated, statements can be referenced with an alias. An alias is a name that can be freely
chosen, but the name may not contain spaces. An alias refers to the output of a statement,
which is a list with no, one, or multiple entities in an AST representation. It is a design
choice to make an alias refer to the output of a statement and not the statement itself.

Definition 7.1.7

Statement aliases: An alias is a name that can be freely chosen, without spaces. An
alias refers to the output of a statement, which is a list with no, one, or multiple enti-
ties of an AST representation.

7.1.4. REDEFINITION OF THE AST REPRESENTATION
The AST representation in figure 10 in appendix C demonstrates that the original AST repre-
sentation is too complicated and too big to be used as a model for the new query language.
The query language used in this study will define a new abstraction on the AST representa-
tion to make the language and the representation easy to comprehend. Another advantage
is that the language and the model can easily be modified, extended, and adapted because
it acts as a facade in between the implementation. The abstraction on the AST represen-
tation that this study uses will be referred to as the pseudo-AST representation. To ensure
that the correct predefined subjects are used in the query language, a reference to all known
subjects will be presented in this section. Although this reference for subjects is provided as
a tree in a hierarchical order, it should just be interpreted as a pick-list reference. If an ele-
ment is not in the presented tree, it cannot be used as a subject in the query language state-
ments. A remark is that the presented subjects can be changed to adapt to future changes.
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INTERFACES AND ABSTRACT CLASSES

Figure 7.5 represents a tree of subjects that can be used in the query language. These
subjects comprehend interfaces and (abstract) classes. A subject can have other subjects
and/or leaves. By referencing the class subject in the pseudo-AST representation, the con-
tent of the leaves and other nodes of this subject can be accessed just like with an itera-
tion. An example is that if the class subject is known, the name of that class can be easily
retrieved since it is a property of the top-level subject Class. The end-nodes or leaves of
the presented tree contain information and are always represented as a list. For example,
the end-node "Name" will contain a list with one name, which is the name of that class.
The "field" end-node will contain a list of all present fields in that class. Some end-nodes
contain a reference to other subjects in the pseudo-AST representation. It is important to
mention that these end-nodes always contain a list, even if there is just one value possible.
The end-node "Super" will contain one or no reference to a superclass, so it will exist out
of a list with one or no value. This design choice eases the use of the query language and
its implementation since there is just one object type to work with. A default leaf does not
have to be specified in query language expressions. If a class is referred, then the name end-
node is used per default. The pseudo-AST representational subjects will not be described
one by one, since these are programming language concepts and widely known, however,
some subjects will be explained:

• Name - The name of this class. This end-node or leaf is the default.
• Sub - A reference to the subclass of this class, if set, this class is a superclass. If not set,

then this class is not a superclass. This end-node holds a reference to the subclass in
the pseudo-AST representation.

• Methods - A list of pseudo-AST representational references to all methods in that
class.

• Fields - A list of pseudo-AST representational references to all fields in that class.
• Parent - A reference to the parent of that class. Which can be another class, which in

that case means that the current class is an inner class. This could also be a package.
• Super - A reference to the superclass of this class, if set, this class is a subclass. If not

set, then this class is not a subclass. This end-node holds a reference to the superclass
in the pseudo-AST representation.

• Implements - The list of references to the implemented interfaces.

Figure 7.5: Interfaces, abstract classes, and classes in the pseudo-AST representation
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METHODS

A method definition of "normal" methods can be seen in figure 7.6. A method has a signa-
ture, can have fields, can have a return type, it has a body, a modifier and it has a parent
subject. The pseudo-AST representational subjects for methods are:

• Signature - A signature is an abstraction that can be used to differentiate between
methods. It consists out of the name, the parameters, and the parameter types of a
method. This leaf is Default.

• Fields - A list of all fields in that method. A field can be a variable declaration. It can
also be a reference to an instance of a class. The field can be public, private, or any
other modifier just like in the definition of the programming language Java.

• Parent - A reference to the parent of that method. Which can be a class, an abstract
class, or an interface.

• Body - Contains a reference to the body of this method.

Figure 7.6: Methods in the pseudo-AST representation

Besides default, static or normal methods, there are abstract methods that cannot own
fields nor have a body. This can be seen in figure 7.7.

Figure 7.7: Abstract methods in the pseudo-AST representation
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METHOD CALLERS

A caller does a method call. It has parameters, a reference, a parent, and a keyword. This
definition can be seen in figure 7.8. The pseudo-AST representational subjects for method
callers are:

• Params - A list with the parameters which are transferred to the method.
• Reference - A reference to the method that is to be called. This leaf is Default.
• Parent - A reference to the parent of that method. Which can be a class or an interface.
• Keyword - Like super. Where a method call refers to the method in a superclass

Figure 7.8: Callers in the pseudo-AST representation

FIELDS

A field is a variable declaration of a primitive type like int or a non-primitive type like an
object reference. A field has a name, a modifier, and in the case of a non-primitive type a
reference to an object or instance. This definition can be seen in figure 7.9. The pseudo-
AST representational subjects for fields are:

• Name - The name of the field.
• Modifier - Keywords final, static, and others apply.
• Parent - A reference to the parent of that field. Which can be a class, an interface, or a

method.
• Instance - A reference to the instance of a field. Which is an object reference.
• Type - Primitive like int, or non-primitive like an object type (class)

Figure 7.9: Fields in the pseudo-AST representation
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INSTANTIATION

An instantiation is the creation of a new instance of an object (ie. class). An instantiation
is known for its keyword "new". An instantiation has a receiver, a parent, parameters, and
if there is a constructor, the constructor is referenced. The parameters concern the pa-
rameters for the constructor. This definition can be seen in figure 7.10. The pseudo-AST
representational subjects for instantiation are:

• Receiver - The receiver is the receiving object or class.
• Parent - A reference to the parent of that method. Which can be a class, an interface,

or a method.
• Param - A reference to the parameters of the constructor. If used.
• Constructor- A reference to the constructor of a class.

Figure 7.10: Instantiations in the pseudo-AST representation

FIELDASSIGNMENT

A fieldassignment is where values or object references get assigned to a field or variable.
For example, the definition of the field test, which is primitive type int. A fieldassignment
occurs where a value or an object reference gets assigned to a field. A fieldassignment has
a name, which is the name of the referenced field. It has a receiver. It has a parent, which
is its parent subject. And it has a type, which is the type of the field where it is referenced
to. The type can be an instance of a class as well. This definition can be seen in figure 7.11.
The pseudo-AST representational subjects for fieldassignments are:

• Name - The name of the referencing field.
• Receiver - The receiver is a reference to the receiving field.
• Parent - A reference to the parent of that method. Which can be a class, an interface,

or a method.
• Type - References the type of the receiving object. Which can be a primitive type or

non-primitive (object reference).

Figure 7.11: Fieldassignment in the pseudo-AST representation
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FIELD ACCESS

A fieldaccess is the usage of a field or variable. For example, the definition of the field test,
which is primitive type int. A fieldaccess is where this field "test" gets used. A fieldaccess
has a name, which is the name of the referenced field. It has a receiver which is the receiv-
ing subject. It has a parent, which is its parent subject. And it has a type, which is the type
of the field where it is referenced to. This definition can be seen in figure 7.12. The pseudo-
AST representational subjects for fieldaccess are:

• Name - The name of the referencing field.
• Receiver - The receiver is a reference to the receiving field.
• Parent - A reference to the parent of that method. Which can be a class, an interface,

or a method.
• Type - References the type of the receiving object. Which can be a primitive type or

non-primitive (object reference).

Figure 7.12: Fieldaccess in the pseudo-AST representation

SCOPABLE ELEMENTS IN THE NEW PSEUDO-AST REPRESENTATION

Some subjects in de pseudo-AST representation are changed to make the query language
easier to work with. To ensure that the correct predefined scopable elements are used in the
query language, a reference to the scopable elements is presented in figure 7.13. Although
this reference for scopable elements is provided as a tree in a hierarchical order, it should
just be interpreted as a pick-list reference. If an element is not in the tree in figure 7.13, it
cannot be used as a scopable element in the query language. A remark is that the list of
scopable elements in figure 7.13 can be changed to adapt to future changes. The pseudo-
AST representational scopable elements can be seen in figure 7.13 below.

Figure 7.13: scopable elements in the pseudo-AST representation
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7.1.5. THE NOTATION OF SCOPABLE ELEMENTS, SUBJECTS, AND FUNCTIONS

IN A STATEMENT IN THE QUERY LANGUAGE
The language that defines the query language will be defined in this section. This language
will be used to prove the research questions raised in this study. The examples below are
based on a hypothetical situation, where the pseudo-AST representation in figure 7.14 is
derived from a source code entity, which is presented in figure 7.15:

Figure 7.14: The hypothetical pseudo-AST representation example derived from the code example in figure
7.15

Figure 7.15: The hypothetical code example to be used in this chapter.
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In this hypothetical situation, there is a PackageY, a ClassX, a ClassY, a methodZ, and an
attribute with the name classAttribute.

NOTATION OF SCOPABLE ELEMENTS

Some examples will be presented to make the usage of the notation of scopable elements
in query language statements clear. The notation of a scopable element is defined as:

@ scope (7.1)

The hypothetical situation from figure 7.14 is used for the examples below.

ex.1: @ClassX , which means in class X.
ex.2: @PackageY , which means in package Y.
ex.3: @ALL , which is an abstraction of everything in the pseudo-AST.

THE NOTATION OF SUBJECTS COMBINED WITH SCOPABLE ELEMENTS

Subjects are always accompanied by a scopable element. To define a subject, it must be
referred to its scope. The definition of the subject notation:

subject @scope (7.2)

The examples below use the scope to specify the exact subject in the pseudo-AST represen-
tation. The hypothetical situation from figure 7.14 is used for the examples below.

ex.4: ClassY@PackageY , which means in class X in (scope of) package Y.
ex.5: MethodZ@ClassX , which means method Z in class X.

Examples 6 to 8 refer to a subject’s leaf or end-node. Their end-nodes or leaves can be
seen in figure 7.5. The hypothetical situation from figure 7.14 is used for the examples be-
low.

ex.6: Parent@ClassX , which means the parent subject of class X. Which is PackageY.
ex.7: Super@ClassX , which means the superclass of class X. Which yields an empty list.
ex.8: Implements@ClassX , The list of interfaces that ClassX implements. Which is none.
ex.9: Modifier@ClassX , The list of modifiers of ClassX. Which is "Public" in this example.

Definition 7.1.6 is applied which leads to a pipelined example.

ex.10: Modifier@MethodZ@ClassX , which is the modifier of Method Z in class X. Which is
Public.

Although pipelining makes cascading of statements possible, the usage of long cascaded
statements should be prevented.
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SHORTENING NOTATIONS WITH ALIASES

Aliases can improve the readability and the reuse of statements. An alias can refer to every
statement or list. An alias should be printed in bold to differentiate between subjects and
scopable elements. Further, the alias its name should represent its content or meaning. An
alias is defined by using a colon with a single space at the end of a statement. Empty aliases
are not allowed and its name must be unique.

st atement : alias (7.3)

ex.11: Modifier @ ClassX: TheModifierOfClassX , Alias TheModifierOfClassX now refers to
the modifier(s) of class X.

ex.12: MethodZ @ ClassX: MethodZOfClassX , alias MethodZOfClassX now refers to the sub-
ject MethodZ in the pseudo-AST representation.

ex.13: Modifier @ MethodZOfClassX , Pipelined and reused alias to represent example ex.10
in two stages with a new alias.

ex.14: param @ MethodZOfClassX: ParamOfMethodZInClassX , the param subject of the
method Z in Class X with a new alias.

ex.15: type @ ParamOfMethodZInClassX , the type subject of the method Z in Class X.

ex.16: signature@MethodZOfClassX: SignatureOfMethodZ , the type subject of the method
Z in Class X.

Statements can be build-up in stages by using aliases, which increases readability. Also,
query language statements that are often used can be aliased to increase their reuse.

ACTIONS TO BE PERFORMED ON OUTPUT

Since the output from a statement is always a list with no, one or multiple entities in an AST
representation, there is a need for a filter function that has not yet been defined. A filter has
an input which is a list and it needs an expression. The expression results in a TRUE or
FALSE for each element in the input list. When the expression is TRUE, the element for
which the expression is TRUE will be added to the output list. When FALSE, the value will
not be added to the output list. A filter action will always start with the word FILTER written
in capital letters. The output of the filter is a list with no-, one-, or multiple elements.

FILTER [expression](list) (7.4)

ex.16: FILTER [modifier=private ](MethodZOfClassX) , which filters the list of modifiers from
Method Z of Class X and outputs either nothing or exactly one method that has the
keyword that matches the expression.
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ASSIGNMENTS TO ALIASES

To increase the expressibility of the query language, assignments, and modifications to
aliases should be possible. An example of an assignment/modification is when a new sig-
nature has to be defined to detect its presence in the pseudo-AST representation. Assume
that there is a signature of method Q. We need to add a parameter to this method Q of the
type int and we need to detect that this new signature of method Q is not yet present. If it
is, there will be an error that the method is already defined. An alias can be assigned to an
existing alias ( which represents a list ) and optionally subjects can be added or removed
from that existing alias and stored into a new alias. The alias labeled "existing alias" on the
right part of equation 7.5 will remain unaltered.

new alias = existing alias ++/– [optional subject ] (7.5)

ex.17: MyAlteredSignature=SignatureOfMethodZ ++ [Param(TypeY,NameY) ] , supplies the
old signature of Method Z with an extra parameter of name Y and Type Y and assigns
it to a new Alias. This assignment has to be repeated to add more than one parameter.

ex.18: MyAlteredSignature=SignatureOfMethodZ – [Param(TypeY,NameY) ] , removes a ex-
tra parameter of name Y and Type Y from the signature of method Z and assigns it to
a new alias.

ex.19: MyCopiedSignature=SignatureOfMethodZ , assigns the signature of method Z to a
new alias.

OPERATIONS ON OUTPUTS OF STATEMENTS

The query language will provide for operations on outputs (lists) of statements, like unions
and intersections. The output of such an operation is a list.

ListA [union/intersects ]ListB (7.6)

ex.20: MyTestParameter= ++ [Param(TypeY,NameY) ] , creates a new alias MyTestParam-
eter ( if it does not exist ) with a parameter of type Y and with name Y. Since this alias
is a new and empty list, a parameter is added to that empty list. If the alias already
existed and the ’++’ symbols had been left away, the alias was overwritten by the new
parameter with NameY of TypeY.

ex.21: ParamOfMethodZInClass[intersects]MyTestParameter , intersects the list of the alias
MyTestParameter with the list of all Parameters in class Z. This is similar to a filter
function. The filter function has similar behavior to the intersection operation.
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7.1.6. DETECTORS
Detectors detect subjects within a scope. A detector needs a subject type and a scope. The
output of a detector is a list of detected subjects. Detectors can be aliased and therefore
reused. The definition of a detector is determined by the question mark at the end of the
subject type:

subject?@scope: ALIAS (7.7)

ex.22: method?@ClassX , detects all method subjects within the scope of ClassX. Which is
just one, MethodZ.

ex.23: class?@ALL: ClassInAll , detects all classes in ALL, which are in this case, two classes,
ClassX and ClassY. Also, an alias ClassInAll is created.

ex.24: method?@ClassInAll: MethodInAll , detects all methods in the two classes ClassX
and ClassY, which is in this case, one method, MethodZ, and creates an alias Metho-
dInAll.

ex.25: signature?@MethodInAll: AllSignaturesInAll , detects all signatures present in ALL
and creates a reusable alias for it.

ex.25: signature?@MethodZ: SignatureOfMethodZ , detects/retrieves one specific signa-
ture of methodZ. Simple actions like retrieving a signature from a known method can
also be performed.

ex.26: caller?@MethodZ@ALL: AllCallersInMethodZ , detects all method-callers of MethodZ
in All.

ex.27: caller?@MethodZ@ClassX: AllCallersInMethodZ , detects all method-callers of MethodZ
which are in the scope of ClassX.

This last definition of the detectors concludes the query language to be used as a tool.
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7.2. MICROSTEP INDUCED HAZARD
Making changes to a source code is a hazardous activity, but it is not clear what that change
implies and what harm is invoked with that hazardous activity. The mechanic refactor-
ing steps from Fowler are reduced to microsteps, but it is not clear if Table 5.2 with mi-
crosteps and their subject can cover the majority of Fowler’s refactorings. If the table with
microsteps is considered complete, the hazards per microsteps should be specified. Finally,
the list of hazards per microstep should be complemented with hazardous code pattern de-
scriptions.

7.2.1. TRANSFORMING FOWLER’S REFACTORING MECHANIC STEPS INTO MI-
CROSTEP

Fowlers refactoring mechanics will be used to transform each step into a list of microsteps.
All steps from the refactoring mechanics are collected and transformed into microsteps.
Since microsteps do not include checks, and/or compile-and-test, these can be removed
from the mechanics. The transformation of Fowler’s mechanic steps to microsteps is pre-
sented below in table 7.1 and table 7.2. A cascade of microsteps means that these mi-
crosteps are executed in sequential order.

Type Fowler’s refactoring steps Microstep

Method

Declare a new method with sig-
nature and body

Add method

Remove old method Remove method
Rename method Remove method + Add method cascade
Replace the body of a method
with the body of the old method

Remove method + Add method cascade

Add parameter to method Remove method + Add method cascade
Remove a parameter to method Remove method + Add method cascade
Change modifier for method Remove method + Add method cascade
Remove modifier for method Remove method + Add method cascade
Add modifier to method Remove method + Add method cascade
Change method return type Remove method + Add method cascade
Create a field Add field
Remove a field Remove field
Rename a field Remove field + Add field cascade
Create getter for a field Add method
Create setter for a field Add method
Change modifier for field/at-
tribute

Remove field + Add field cascade

Remove modifier for field/at-
tribute

Remove field + Add field cascade

Add modifier to field/attribute Remove field + Add field cascade
Change the field type Remove field + Add field cascade

Table 7.1: Fowler’s refactoring mechanic steps to microsteps table part 1

Part 2 of the table will continue on the next page.
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Type Fowler’s refactoring steps Microstep

Class

Create a new class Add class
Remove a class Remove Class
Rename a class Remove Class + Add Class cascade
Move a class with a new name
and existing body

Remove Class + Add Class cascade

Change modifier for class Remove Class + Add Class cascade
Remove modifier for class Remove Class + Add Class cascade
Add modifier to class Remove Class + Add Class cascade

Interface

Rename interface Remove interface + Add interface cascade
remove interface Remove interface
add interface Add interface
Change modifier for interface Remove interface + Add interface cascade
Remove modifier for interface Remove interface + Add interface cascade

Table 7.2: Fowler’s refactoring mechanic steps to microsteps table part 2

This list of microsteps covers a selection of Fowler’s mechanic refactoring steps. This selec-
tion is made from as many refactorings as needed to cover all microsteps.
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7.2.2. WHAT WILL THE HAZARD(S) OF A PARTICULAR MICROSTEP BE?
In principle all microsteps are hazardous. Removing subjects, with the remove method
microstep, can induce harm because callers to that method are no longer valid. The same
principle is valid for adding subjects, like adding an attribute. A similar attribute with the
same name can already be present. The hazards per microsteps will be discussed in this
section. The hazard(s) that can occur with microstep activity will be presented for each
microstep. The short label (Short) of the hazards represents the microstep and the hazard
id.

MICROSTEPS THAT CONCERN CLASS SUBJECTS

Microstep Add Class adds a class in a source code entity. A class has a name and a body.
See table 7.3 below for the hazard definitions of the Add Class microstep:

Microstep Class Attribute Method Interface Parameter
Add X
Remove
Rename

Short Hazard Add Class Type Severity
AC-H1 Class is already defined Compile error Low

Table 7.3: Microsteps Add class with hazard(s)

Microstep Remove Class removes a class in a source code entity. See table 7.4 below:

Microstep Class Attribute Method Interface Parameter
Add
Remove X
Rename

Short Hazard Remove Class Type Severity
RC-H1 Class is still in use. Compile error Low
RC-H2 Class is removed from the inheritance

tree.
Compile error Low

RC-H3 Static method from Inner static class
still referenced from ALL, and the out-
erclass is going to be removed.

Compile error Low

RC-H4 Class is removed and possible de-
sign pattern is broken, due to abstract
class definition.

Compile error Low

Table 7.4: Microsteps Remove Class with hazard(s)
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Table 7.4 for Remove Class will be redefined in Table 7.5 since the hazards RC-H1 and RC-
H2 consists out of multiple separate hazards. ie. in use can comprehend that a method or
an attribute of that class can still be referenced.

Short Hazard Remove Class Type Severity
RC-H1-1 Instantiations (keyword new) of a

class will become invalid.
Compile error Low

RC-H1-2 Object reference to class will become
invalid. This includes method calls or
attributes

Compile error Low

RC-H1-3 Caller to a method in a class is still
present in the source tree.

Compile error Low

RC-H2-1 Subclass is removed from the inheri-
tance tree.

Compile error Low

RC-H2-2 Superclass is removed from the inher-
itance tree.

Compile error Low

RC-H3 Static method from Inner static class
still referenced from ALL, and the out-
erclass is going to be removed.

Compile error Low

RC-H4 Class is removed and possible de-
sign pattern is broken, due to abstract
class definition.

Compile error Low

Table 7.5: Remove Class microsteps with their hazard(s)

Microstep Rename Class renames a class in a source code entity. See table 7.6 below.

Microstep Class Attribute Method Interface Parameter
Add
Remove
Rename X

Table 7.6: Microstep rename class

The Rename Class microstep is identical to a cascaded action of the add class microstep
with a new name and the old body and the remove class microstep with its old name and
body. See figure 7.16. Important notice about the rename microstep is that the hazards of
the separate remove- and add Class microstep cascade as well.

Figure 7.16: Rename Class as a cascaded action of a remove- and add Class microstep
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MICROSTEPS THAT CONCERN ATTRIBUTE SUBJECTS

Microstep Add Attribute adds an attribute to a class in a source code entity. An attribute
has a name, a type, and a modifier. See table 7.7 below for the hazards of the Add attribute
microstep.

Microstep Class Attribute Method Interface Parameter
Add X
Remove
Rename

Short Hazards Add Attribute Type Severity
AA-H1 Attribute already defined Compile error Low
AA-H2 Inner-/outer class attribute redefini-

tion ( Attribute from outer class is
used in inner class and new attribute
with same name and type is added to
inner class )

Program Preservation Break Major

AA-H3 Inheritance redefined attribute in
Subclass ( Attribute from superclass is
used in a sub class and new attribute
with same name and type is added to
that sub class)

Program Preservation Break Major

Table 7.7: Microsteps Add Attribute with hazard(s)
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Microstep Remove Attribute Removes an attribute from a class in a source code entity. An
attribute has a name, a type, and a modifier. See table 7.8 below for the hazards of the
Remove attribute microstep"

Microstep Class Attribute Method Interface Parameter
Add
Remove X
Rename

Short Hazards Remove Attribute Type Severity
RA-H1 Attribute still in use. Compile error Low
RA-H2 Inner-/outer class attribute redefini-

tion ( Attribute from outer class is
used and declared in inner and outer
class and attribute is removed from
inner class )

Program Preservation Break Major

RA-H3 Inheritance redefined attribute in
Subclass ( Attribute from superclass
is used and declared in super- and
in subclass and subclass attribute is
removed ).

Program Preservation Break Major

Table 7.8: Microsteps Remove Attribute with hazard(s)

Microstep Rename Attribute, renames an attribute in a class in a source code entity. See
table 7.9 below:

Microstep Class Attribute Method Interface Parameter
Add
Remove
Rename X

Table 7.9: Microstep rename attribute

The rename attribute microstep is identical to a cascaded action of the add attribute mi-
crostep and the remove attribute microstep. An important notice is that when the mi-
crosteps are cascaded, the hazards of the separate microsteps cascade as well.
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MICROSTEPS THAT CONCERN METHOD SUBJECTS

Microstep Add Method adds a method to a source code entity. A method has a name, a
type, a modifier, a signature, and a body. See table 7.10 below for the hazards of the Add
method microstep.

Microstep Class Attribute Method Interface Parameter
Add X
Remove
Rename

Short Hazards Add Method Type Severity
AM-H1 Method already defined Compile error Low
AM-H2 Inheritance Redefined Method in

Subclass. caller from subclass calls
Subclass method instead of super-
class method, after adding a method
to the subclass.

Program Preservation Break Major

Table 7.10: Microsteps Add method with hazard(s)

Microstep Remove Method Removes a method from in a source code entity. A method has
a name, a type, a modifier, a signature, and a body. See table 7.11 below for the hazards of
the Remove Method microstep.

Microstep Class Attribute Method Interface Parameter
Add
Remove X
Rename

Short Hazards Remove Method Type Severity
RM-H1 Callers to method are incorrect. Compile error Low
RM-H2 Inheritance Redefined Method in

Subclass. caller from subclass calls
Superclass method instead of sub-
class method, after removing a
method from the subclass.

Program Preservation Break Major

RM-H3 Method definition in an interface. Compile error Low

Table 7.11: Microsteps Remove method with hazard(s)
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Microstep Rename Method renames a method in a source code entity. A method has a
name, a type, a modifier, and a signature. See table 7.12 below:

Microstep Class Attribute Method Interface Parameter
Add
Remove
Rename X

Table 7.12: Microstep rename method

The rename method microstep is identical to a cascaded action of the add method mi-
crostep and the remove method microstep. An important notice is that when the mi-
crosteps are cascaded, the hazards of the separate microsteps cascade as well.

MICROSTEPS THAT CONCERN INTERFACE SUBJECTS

Microstep Add Interface adds an interface to a source code entity. An interface has a name,
a modifier, and a body. See table 7.13 below for the hazards of the Add Interface microstep.

Microstep Class Attribute Method Interface Parameter
Add X
Remove
Rename

Short Hazards Add Interface Type Severity
AI-H1 Interface already defined. Compile error Low

Table 7.13: Microsteps Add Interface with hazard(s)

Microstep Remove Interface removes an interface from a source code entity. An interface
has a name, a modifier, and a body. See table 7.14 below for the hazards of the Remove
Interface microstep.

Microstep Class Attribute Method Interface Parameter
Add
Remove X
Rename

Short Hazards Remove Interface Type Severity
RI-H1 Interface still in use by a class. Compile error Low
RI-H2 Interface still in use by another inter-

face.
Compile error Low

RI-H3 Interface holds static/default imple-
mentations.

Compile error Low

Table 7.14: Microsteps Remove interface with hazard(s)
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Microstep Rename Interface renames an interface in a source code entity. An interface has
a name, a modifier, and a body. See table 7.15 below:

Microstep Class Attribute Method Interface Parameter
Add
Remove
Rename X

Table 7.15: Microstep rename interface

The rename interface microstep is identical to a cascaded action of the add interface mi-
crostep and the remove interface microstep. An important notice is that when the mi-
crosteps are cascaded, the hazards of the separate microsteps cascade as well.

MICROSTEPS THAT CONCERN PARAMETER SUBJECTS

Microstep Add Parameter adds a Parameter to a source code entity (ie. a method). A pa-
rameter has a name and a type. See table 7.16 below for the hazards of the Add Parameter
microstep.

Microstep Class Attribute Method Interface Parameter
Add X
Remove
Rename

Short Hazards Add Interface Type Severity
AP-H1 callers to method became incorrect

after adding a parameter.
Compile Error Low

AP-H2 Method already defined after adding a
parameter.

Compile Error Low

AP-H3 caller from subclass calls Subclass
method instead of superclass
method, after adding a parameter
to the method in the subclass.

Program Preservation Break Major

AP-H4 Method definition in an interface. In-
terface contract broken after adding a
parameter.

Compile error Low

AP-H5 Parameter of method with the same
name is already present

Compile error Low

AP-H6 Field with the same name is already in
use in Method

Compile error Low

Table 7.16: Microsteps Add Parameter with hazard(s)
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Microstep Remove Parameter removes a parameter in a source code entity. A parameter
has a name and a type. See table 7.17 below for the hazards of the Remove Interface mi-
crostep.

Microstep Class Attribute Method Interface Parameter
Add
Remove X
Rename

Short Hazards Remove Interface Type Severity
RP-H1 callers to method became incorrect

after removing a parameter.
Compile Error Low

RP-H2 Method already defined after remov-
ing a parameter.

Compile Error Low

RP-H3 caller from subclass calls Subclass
method instead of superclass method,
after removing a parameter to the
method in the subclass.

Program Preservation Break Major

RP-H4 Method definition in interface. Inter-
face contract broken after removing a
parameter.

Compile error Low

RP-H5 Parameter still in use in Method. Compile error Low

Table 7.17: Microsteps Remove Parameter with hazard(s)

Microstep Rename Parameter renames a parameter in a source code entity. A parameter
has a name and a type. See table 7.18 below:

Microstep Class Attribute Method Interface Parameter
Add
Remove
Rename X

Table 7.18: Microstep Rename Parameter

The Rename Parameter microstep is identical to a cascaded action of the add parameter
microstep and the remove parameter microstep. An important notice is that when the mi-
crosteps are cascaded, the hazards of the separate microsteps cascade as well.
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7.2.3. WHICH HAZARDOUS CODE PATTERN DESCRIPTIONS ARE NEEDED FOR

EACH MICROSTEP’S INDUCED HAZARD TO DETECT POTENTIAL SOFT-
WARE HARM?

The previous section defined the hazards per microstep. This section will focus on what
hazardous code pattern descriptions accompanies a microstep’s induced hazard to detect
potential software harm. The hazardous code pattern descriptions will be described with
the query language per defined microstep induced hazard. A hazardous code pattern de-
scription will be created for the hazard AC-H1 in table 7.19 to demonstrate the power of the
query language. This Table is a copy of Table 7.3 to enhance the reading convenience.

Short Hazard Add Class Type Severity
AC-H1 Class is already defined Compile error Low

Table 7.19: Microsteps Add class with hazard(s)

This hazard describes that the hazardous code pattern descriptions for this hazard exist
out of the presence of a class definition with the same name within the source code en-
tity at the package level. Important notice for this definition is that the name of the new
to-be-added class should be known. To detect potential software harm, the harmful code
fragment needs to be detected in the package. The scopable elements figure from 7.17 is
used to select the right subjects. The scope is defined at package-level, since a name col-

Figure 7.17: scopable elements in the pseudo-AST representation

lision on class level can only occur within the scope of a package. The subject is the class
that is to be added, from which the name is yet known. This class will be aliased as the iN-
ewclass. Since the presence of this harmful code fragment needs to be detected, the state-
ment will be declared as a detector with a question mark. Since the end-node or leaf from
the class subject is the name of the class, there is no need to express the end-node "name"
of the subject class. ie. name@class. The final query language statement for (AC-H1) is:
iNewclass?@package. Where the iNewclass alias refers to the name of the to-be-added
class. This exact statement is the hazardous code pattern description that detects the haz-
ardous code fragments in the source code entity for the hazard AC-H1.
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Another example is a relatively large and complex harmful code pattern description for the
microstep Add Method with its induced Hazard H2, which is part of the harmful trigger
event AM-H2-HCPD. Step by step the statements of the query language which represents
this harmful code pattern description will be explained.

A problem of the Add Method microstep arises when there is a superclass with a sub-
class. The subclass has a method call, that does not use the keyword super, which calls a
method in the superclass. Now, a method will be added to the subclass, assume this is a
method with a signature represented by the alias iNewSignature. The signature of this new
method and the class where this new method will be added must be known. If the signa-
ture represented by the alias iNewSignature of the newly added method in the subclass is
the same as the signature of the Method from the superclass, program preservation break
occurs because the caller from the subclass now calls the subclass method instead of the
superclass method. The harmful code pattern description for the add method microstep
hazard #2 (AM-H2-HCPD) is explained below:

super?@iClassOfMethod2Add: ClassOfMethodHasSuperAM

Checks if the class iClassOfMethod2Add has a superclass and creates an alias for it.

sub?@iClassOfMethod2Add: ClassOfMethodHasSubAM

Checks if the class iClassOfMethod2Add has a subclass and creates an alias for it.

FILTER[signature=iNewSignature](method?@ClassOfMethodHasSuperAM): MethodIsAtSuperAM

Checks if the Signature iNewSignature is already defined in the superclass
ClassOfMethodHasSuperAM. From all methods in the superclass, find a method
with Signature=iNewSignature.

caller?@MethodIsAtSuperAM: iNewMethodToSuperCallAM

Check if there is a caller to that method in the superclass

FILTER[keyword!=’super’](iNewMethodToSuperCallAM): MethodSupCallNoKeyAM

From that list of callers to the method in the superclass, filter the callers that do not
use the keyword ’super’.

MethodSupCallNoKeyAM [intersects]caller?@ClassOfMethodHasSubAM: CallSubToSiginSupNoKeyAM

Intersect that list of non-super Callers with all callers from the subclass. There is a list of caller(s)
to MethodX without the keyword super and we test if there is one in the subclass by intersecting
both lists. The final output is the alias CallSubToSiginSupNoKeyAM. If empty, the
hazardous code fragment is not detected. If one or multiple elements are present, program
preservation break danger will happen.
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HAZARDOUS CODE PATTERN DESCRIPTIONS THAT CONCERN CLASS MICROSTEPS

The representation of the Hazardous code pattern description for Add Class microstep
Hazards (AC-H1) can be seen in Table 7.20.

input(AC-H1-HCPD): iNewClass = input(i) Class to be added.

Harmful Trig-
ger Event

Hazardous code pattern description

AC-H1-HCPD newClass?@package: ClassAlreadyInPackage

Table 7.20: Microsteps Add class with Hazardous code pattern descriptions

The representation of the Hazardous code pattern description for Remove Class microstep
Hazards (RC-H) can be seen in Table 7.21.

input(All detectors): iClass2BRemoved = The class to be removed.

Harmful
Trigger
Event

Hazardous code pattern description

RC-H1-1-

HCPD

FILTER[receiver=iClassRemoved](Instantiation?@ALL): findFieldInstantiationToClass

RC-H1-2-

HCPD

FILTER[instance=iClass2BRemoved](field?@ALL): FindFieldReferenceToClass

RC-H1-3-

HCPD

caller?@iClass2BRemoved@ALL: AllCallersToMyClass

RC-H2-1-

HCPD

super?@iClass2BRemoved: IfEmptyNoSuperclassInTree

RC-H2-2-

HCPD

sub?@iClass2BRemoved: IfEmptyNoSubclassInTree

RC-H3-

HCPD

class?@iClass2BRemoved: AreThereClassesInsideAClass

FILTER[modifier=’static’](AreThereClassesInsideAClass): StaticInnerClasses

method?@StaticInnerClasses: MethodsOfStaticInnerClasses

FILTER[modifier=’static’](MethodsOfStaticInnerClasses): StaticMethodsInStaticInnerClasses

caller?@StaticMethodsInStaticInnerClasses@ALL: ListOfCallersToStaticMethodInStaticInnerClass

RC-H4-

HCPD

FILTER[modifier=’astract’](iClass2BRemoved): FindClassAbstractModifier

Table 7.21: Microsteps Remove Class hazards with Hazardous code pattern descriptions

For Rename Class microstep a cascade of the add and remove class hazardous code
fragments have to be detected.
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HAZARDOUS CODE PATTERN DESCRIPTIONS THAT CONCERN ATTRIBUTE MICROSTEPS

The representation of the Hazardous code pattern description for Add Attribute microstep
Hazards (AA-H) can be seen in Table 7.22.

input(All AA detectors): iIsAttributeToAdd = The attribute that will be added.
input(All AA detectors): iClassOfAttributeToAdd = The class that the new attribute will be
add to.

Harmful
Trigger
Event

Hazardous code pattern description

AA-H1-

HCPD

FILTER[name=iIsAttributeToAdd](field?@iClassOfAttributeToAdd): FindFieldWithNameInClass

AA-H2-

HCPD

parent?@iClassOfAttributeToAdd: ParentOfClassThatHasAttribute

ParentOfClassThatHasAttribute[intersects]class?@package: ParentThatHasAttributeIsClass

FILTER[name=iIsAttributeToAdd](field?@ParentThatHasAttributeIsClass): ParHasAttrAA

FILTER[name=ParHasAttrAA](Fieldassignment?@iClassOfAttribute): ListAssignmentsOfFieldsInClassAA

AA-H3-

HCPD

super?@iClassOfAttributeToAdd: SuperClassOfClassThatHasAttribute

FILTER[name=iIsAttributeToAdd](field?@SuperClassOfClassThatHasAttribute): SupHasAttrAA

FILTER[name=SupHasAttrAA](Fieldassignment?@iIsAttributeToAdd): AssignFieldsInSupOfClassAA

Table 7.22: Microsteps Add Attribute hazards with Hazardous code pattern descriptions

The representation of the Hazardous code pattern description for Remove Attribute mi-
crostep Hazards (RA-H) can be seen in Table 7.23.

input(All RA detectors): iAttr2Remove = The attribute to be removed

Harmful Trig-
ger Event

Hazardous code pattern description

RA-H1-HCPD
class?@iAttr2Remove: ClassOfAttr2Remove

FILTER[Receiver=iAttr2Remove](Fieldassignment?@ClassOfAttr2Remove): AssignToOldAttrRef

RA-H2-HCPD

class?@iAttr2Remove: ClassOfAttr2Remove

parent?@ClassOfAttr2Remove: ParentOfClassThatAttr2Remove

ParentOfClassThatAttr2Remove[intersects]class?@package: ParentIsClassRA

FILTER[name=iAttr2Remove](field?@ParentIsClassRA): ParHasAttrRA

FILTER[name=ParHasAttrRA](Fieldassignment?@ClassOfAttr2Remove): ListAssignFieldsInClassRA

RA-H3-HCPD

class?@iAttr2Remove: ClassOfAttr2Remove

super?@ClassOfAttr2Remove: SuperclassOfClassThatHasAttr2Remove

FILTER[name=iAttr2Remove](field?@SuperclassOfClassThatHasAttr2Remove): SupHasAttrRA

FILTER[name=SupHasAttrRA](Fieldassignment?@ClassOfAttr2Remove): AssignFieldsInSupClassRA

Table 7.23: Microsteps Remove Attribute hazards with Hazardous code pattern descriptions

For Rename Attribute microstep the hazardous code pattern descriptions of a cascade of
the add and remove Attribute have to be detected.
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HAZARDOUS CODE PATTERN DESCRIPTIONS THAT CONCERN METHOD MICROSTEPS

The representation of the Hazardous code pattern description for Add Method microstep
Hazards (AM-H) can be seen in Table 7.24.

input(All AM detectors): iNewSignature = The new method signature of method to be
added.
input(All AM detectors): iClassOfMethod2Add = The class that new method will be add to.

Harmful
Trigger
Event

Hazardous code pattern description

AM-H1-

HCPD

FILTER[signature=iNewSignature](method?@iClassOfMethod2Add): MethodAlreadyDefinedInClassAM

AM-H2-

HCPD

super?@iClassOfMethod2Add: ClassOfMethodHasSuperAM

sub?@iClassOfMethod2Add: ClassOfMethodHasSubAM

FILTER[signature=iNewSignature](method?@ClassOfMethodHasSuperAM): MethodIsAtSuperAM

caller?@MethodIsAtSuperAM: iNewMethodToSuperCallAM

FILTER[keyword!=’super’](iNewMethodToSuperCallAM): MethodSupCallNoKeyAM

MethodSupCallNoKeyAM [intersects]caller?@ClassOfMethodHasSubAM: CallSubToSiginSupNoKeyAM

Table 7.24: Microsteps Add Method hazards with Hazardous code pattern descriptions
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The representation of the Hazardous code pattern description for Remove Method mi-
crostep Hazards (RM-H) can be seen in Table 7.25.

input(All RM detectors): iOldMethod2Remove = Method to be removed.

Harmful
Trigger
Event

Hazardous code pattern description

RM-

H1-

HCPD

signature?@iOldMethod2Remove: Signature2Remove

FILTER[signature=Signature2Remove](caller?@ALL): FindCallersToSignature2BRemoved

RM-

H2-

HCPD

signature?@iOldMethod2Remove: Signature2Remove

class?@iOldMethod2Remove: ClassOfMethod2Remove

super?@ClassOfMethod2Remove: ClassOfMethodHasSuperRM

sub?@ClassOfMethod2Remove: ClassOfMethodHasSubRM

FILTER[signature=Signature2Remove](method?@ClassOfMethodHasSuperRM): MethodIsAtSuperRM

caller?@MethodIsAtSuperRM: NewMethodToSuperCallRM

FILTER[keyword!=’super’](NewMethodToSuperCallRM): MethodSupCallNoKeyRM

MethodSupCallNoKeyRM [intersects]caller?@ClassOfMethodHasSubRM: CallSubToSiginSupNoKeyRM

RM-

H3-

HCPD

signature?@iOldMethod2Remove: Signature2Remove

package?@iOldMethod2Remove: Method2BremovedPackage

Interface?@Method2BremovedPackage: AllInterfacesInPackageRM

FILTER[signature=Signature2Remove](method?@ AllInterfacesInPackageRM): MethodDefInterfRM

FILTER[modifier=’static’||modifier=’default’]( MethodDefInterfRM): MethodStaticDefaultDefInInterfaceRM

Table 7.25: Microsteps Remove Method hazards with Hazardous code pattern descriptions

For Rename Method microstep the hazardous code pattern descriptions of a cascade of the
add and remove method has to be detected.

HAZARDOUS CODE PATTERN DESCRIPTIONS THAT CONCERN INTERFACE MICROSTEPS

The representation of the Hazardous code pattern description for Add Interface microstep
Hazards (AI-H1) can be seen in Table 7.26.

input: iInterface2Add = To be added interface.

Harmful Trig-
ger Event

Hazardous code pattern description

AI-H1-HCPD iInterface2Add?@ALL: NewInterfaceAlreadyDefined

Table 7.26: Microsteps Add Method hazards with Hazardous code pattern descriptions
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The representation of the Hazardous code pattern description for Remove Interface mi-
crostep Hazards (RAI-H) can be seen in Table 7.27.

input(AM-H3-HCPD): iInterFace2Remove = Interface to be removed.

Harmful Trig-
ger Event

Hazardous code pattern description

RI-H1-HCPD FILTER[implements=iInterFace2Remove](class?@ALL): ClassThatImplInterfaceToRemove

RI-H2-HCPD FILTER[implements=iInterFace2Remove](interface?@ALL): InterfaceThatImplInterfaceToRemove

RI-H3-HCPD

interface?@ALL: AllInterfaces

FILTER[modifier=’static’||modifier=’default’](method?@AllInterfaces): StaticDefaultImpl

caller?@StaticDefaultIImpl@ALL: StaticInterfaceImplInUse

Table 7.27: Microsteps Remove Interface hazards with Hazardous code pattern descriptions

For Rename Interface microstep the hazardous code pattern descriptions of a cascade
of the add and remove Interface have to be detected.

58



HAZARDOUS CODE PATTERN DESCRIPTIONS THAT CONCERN PARAMETER MICROSTEPS

The representation of the Hazardous code pattern description for Add Parameter microstep
Hazards (AP-H) can be seen in Table 7.28.

input(All AP detectors): iOldMethod = Old method of Parameter to add to.
input(All AP detectors): iTypeNew = Type of parameter to add
input(All AP detectors): iNameNew = Name of parameter to add

Harmful
Trigger
Event

Hazardous code pattern description

AP-H1-

HCPD

signature?@iOldMethod: OldSignature

FILTER[signature=OldSignature](caller?@ALL): FindCallersToSignatureWithNewParam

AP-H2-

HCPD

signature?@iOldMethod: OldSignature

class?@iOldMethod: OldMethodClass

iNewSignature=OldSignature ++ [Param(iTypeNew,iNameNew)]

FILTER[signature=NewSignature](method?@OldMethodClass): MethodAlreadyDefinedInClassAP

AP-H3-

HCPD

signature?@iOldMethod: OldSignature

NewSignature=OldSignature ++ [Param(iTypeNew,iNameNew)]

class?@iOldMethod: OldMethodClass

super?@OldMethodClass: ClassOfMethodHasSuperAP

sub?@OldMethodClass: ClassOfMethodHasSubAP

FILTER[signature=NewSignature](method?@ClassOfMethodHasSuperAP): MethodIsAtSuperAP

caller?@MethodIsAtSuperAP: NewMethodToSuperCallAP

FILTER[keyword!=’super’](NewMethodToSuperCallAP): MethodSupCallNoKeyAP

MethodSupCallNoKeyAP [intersects]caller?@ClassOfMethodHasSubAP: CallSubToSiginSupNoKeyAP

AP-H4-

HCPD

signature?@iOldMethod: OldSignature

package?@iOldMethod: OldMethodpackage

Interface?@OldMethodpackage: AllInterfacesInPackageAP

FILTER[signature=OldSignature](method?@ AllInterfacesInPackageAP): MethodDefInInterfaceAP

FILTER[modifier=’static’||modifier=’default’]( MethodDefInInterfaceAP): MethodStatDefDefInInterfAP

AP-H5-

HCPD

param?@iOldMethod: ParamsOfOldMethod

FILTER[name=iNameNew](ParamsOfOldMethod): NameIsAlreadyPresentInParamListAP

AP-H6-

HCPD

fields?@iOldMethod: FieldsOfOldMethod

FILTER[name=iNameNew](FieldsOfOldMethod): ParamInUseByFieldAP

Table 7.28: Microsteps Add Parameter hazards with Hazardous code pattern descriptions
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The representation of the Hazardous code pattern description for Remove Parameter mi-
crostep Hazards (RP-H) can be seen in Table 7.29.

input(All AP detectors): iOldMethod = Old method of Parameter to remove from.
input(All AP detectors): iTypeRemove = Type of parameter to Remove
input(All AP detectors): iNameRemove = Name of parameter to Remove

Harmful
Trigger
Event

Hazardous code pattern description

RP-H1-

HCPD

signature?@iOldMethod: OldSignature

FILTER[signature=OldSignature](caller?@ALL): FindCallersToSignatureWithRemovedParamRP

RP-H2-

HCPD

signature?@iOldMethod: OldSignature

class?@iOldMethod: OldMethodClass

NewSignature=OldSignature – [Param(iTypeRemove,iNameRemove)]

FILTER[signature=NewSignature](method?@iOldMethodClass): MethodAlreadyDefinedInClassRP

RP-H3-

HCPD

signature?@iOldMethod: OldSignature

NewSignature=OldSignature – [Param(iTypeRemove,iNameRemove)]

class?@iOldMethod: OldMethodClass

super?@OldMethodClass: ClassOfMethodHasSuperRP

sub?@OldMethodClass: ClassOfMethodHasSubRP

FILTER[signature=NewSignature](method?@ClassOfMethodHasSuperRP): MethodIsAtSuperRP

caller?@MethodIsAtSuperRP: NewMethodToSuperCallRP

FILTER[keyword!=’super’](NewMethodToSuperCallRP): MethodSupCallNoKeyRP

MethodSupCallNoKeyRP [intersects]caller?@ClassOfMethodHasSubRP: CallSubToSiginSupNoKeyRP

RP-H4-

HCPD

signature?@iOldMethod: OldSignature

package?@iOldMethod: OldMethodpackage

Interface?@OldMethodpackage: AllInterfacesInPackageRP

FILTER[signature=OldSignature](method?@ AllInterfacesInPackageRP): MethodDefInInterfaceRP

FILTER[modifier=’static’||modifier=’default’]( MethodDefInInterfaceRAP): MethodStatDefDefInInterfRP

RP-H5-

HCPD

body?@iOldMethod: BodyOfOldMethod

fieldaccess?@BodyOfOldMethod: AllFieldAccessInsideMethodBody

FILTER[name=iNameNew](AllFieldAccessInsideMethodBody): ParamInUseInsideMethodRP

Table 7.29: Microsteps Remove Parameter hazards with Hazardous code pattern descriptions

For the Rename Parameter microstep the hazardous code pattern descriptions of a cas-
cade of the add and remove parameter has to be detected.
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7.3. A FLEXIBLE DETECTION MECHANISM TO DETECT FOR PO-
TENTIAL SOFTWARE HARM

The previous chapter elaborated on the method to detect hazardous code fragments which
when combined with a microstep, form the harmful trigger event. To detect software harm,
the trigger event needs to be detected in the code context and the severity of the accompa-
nying hazard should be known. This chapter will focus on a possible abstract solution that
can detect potential software harm by using detectors that detect harmful code fragments.
This mechanism will also provide an advice based on the detector- and code context.

7.3.1. HOW CAN HAZARDOUS CODE FRAGMENTS BE DETECTED IN A SOURCE

CODE ENTITY FLEXIBLY?
A detector as used in this context detects hazardous code fragments and has an input and
an output. The detectors must have the ability to be cascaded or to be put in parallel 1.
Separate detectors must have the ability to be composed into a new detector. A detector
must provide a verdict, which is an answer consisting of the entity that it has to detect. The
verdict process is an extra layer of abstraction to combine the detector’s findings into an
answer. When detectors answer atomic questions, this verdict process is least complex,
but when the detector is a composition of multiple detectors, the complexity of the verdict
process rises.

Figure 7.18: A atomic detector

In figure 7.18 an abstract design of a detector is presented. A detector is a list of query
language statements that need to be executed in an execution space where the detector
is provided with the proper input data. As an input, the detector needs the code context,
which consists of the pseudo-AST representation of the source code. The input labeled
"detector input when applicable" is used for cascading purposes of detectors.

DETECTOR OUTPUT/INPUT

It provides an output, which is a list of detected subjects or scopes and a copy of its input
context 2. Where the detector’s findings occupy the last position in the list and where the
input occupies the first position of the list.

1parallel detectors have not yet been necessary and are therefore not designed
2Providing this copy of the input to the output is an implementation choice to ease ongoing changes in de-

tector requirements. The query language statements do not have to cope with this implementation choice.
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Other input information that a detector needs, is a scopable object, this object is then used
as a starting point. This can be any subject, as long as all information is provided. A de-
tector that has to find all methods in a class, needs the class as a scopable subject. Hence,
method?@classX. Some detectors need more information, like when a future signature of a
to-be added method has to be detected in the source code context. Such a detector needs
a scope and a future signature. The output of a detector is the context of the detected en-
tity. A detector that detects for methods will output all pseudo-AST node references to
these methods. An example output of a pseudo-AST reference to a detected method will
be: TestMeY@ClassY@Package. A detector that detects if a method is still in use by callers,
will output a list of pseudo-AST node references to that callers. Besides detector output, a
verdict mechanism is added to the design to increase the flexibility of a detector as can be
seen in picture 7.19.

VERDICT PROCESSING

The verdict mechanism consists out of decision logic, which combines detector findings
into a final verdict. This is not very useful for atomic detectors, but it is very useful for com-
positions of detectors. Atomic detectors used in this thesis have their verdict logic build in
the presence detector, which is more complex 1. A composite detector exists out of multi-
ple detectors and their results are combined into a final verdict. A composite detector can
be reused for other detection purposes by only rearranging its decision logic.

Figure 7.19: An atomic detector with verdict processing

Decision logic, present in the verdict processing mechanism, determines the quantities in
the list of a detector’s output. It determines whether there is no element, one element, or
multiple elements present. An example of a verdict pseudo logic is presented below:

VERDICT1(methodAllreadyDefinedInClass ==!empty)
If the list from detector methodAllreadyDefinedInClass is NOT empty, then there will be a
compiler error!

1This was a design choice at the start of this study
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COMPOSITION OF DETECTORS

Detector compositions consist out of multiple detectors, but it has only one verdict pro-
cessing mechanism. The verdict processing mechanism is rather specialistic, but it is highly
reconfigurable and reusable. When designing detectors, one has to think about combining
their output data as well, which is what a verdict processor does. The logic of the verdict
processor has been replaced by a Look Up Table (LUT) with embedded logic. In this way, a
verdict mechanism can be more easily reused and reprogrammed when necessary. A ver-
dict mechanism should be scaleable to the number of detectors that it uses. A detector
composition, therefore, exists out of:
• One or more detectors ( these are the query language statements in an execution

space.
• A verdict processor that scales with the number of detectors used, because the verdict

processor also deserializes the detector findings to parallel entities 1.
• A connection from the output of the last detector to the verdict processor. This de-

tector has all information of its previous detectors including the input context.
• A hazard- or verdict LUT which replaces the separate logic verdict statements.
• A connection between interconnected detectors. Except for the first and the last de-

tector. These make cascading of composite detectors possible.
• Context input, like the current method signature and the future signature. This infor-

mation must be available for all serialized detectors via a list of cascaded findings.

The composition of detectors can be seen in figure 7.20. This composition includes the
verdict processor which produces the verdict and uses a LUT to generate the correct verdict.
The detectors provide the information from its output to the others detector’s input as can
be seen in figure 7.21. The verdict processor is necessary to provide a verdict for a specific
detector purpose and it must be redesigned when the purpose of the detector composition
changes. This redesign comprehends:
• Scale the verdict processor towards the number of detectors2.
• Redesign the verdict logic. Which must be performed by hand by a detector designer.

This implicates changing and updating the LUT.

1An abstract design suggestion about how to communicate the detector’s output to the verdict processor has
been made. In this abstract design, this is done serially, but this does not have to be a must-have requirement
for implementation

2because in this design assumption the detector data is serially transmitted
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Figure 7.20: A composite detector with verdict processing

DETECTOR INPUT OUTPUT

The serialized output1. of the detectors is cascaded as can be seen in figure 7.21 and in
figure 7.22.

Figure 7.21: Serialized and cascaded output of all detectors

The separate data of all query language statement Aliases within the detector is also emitted
in a serial manner, which implicates that all data is available for diagnostic- or for advisory
purposes. This also implicates that each query language statement alias must always have
a unique name.

Figure 7.22: Serial serialized and cascaded output of all detectors

Detectors can be cascaded without change, however, not all detectors are sensitive to the
same input context. If a detector cannot cope with the context input, like a detector that
expects a class subject and receives a method signature, it should output a specific symbol
that represents a fault condition. This prevents false positives2. Normally it should not
receive abnormal data when properly designed.

1An abstract design suggestion about how to communicate the detector’s output to the verdict processor has
been made. In this abstract design, this is done serially, but this does not have to be a must-have requirement
for implementation

2It is not yet known how to flag for fault conditions
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COMPOSED DETECTORS

A composition of detectors is presented in figure 7.23. The verdict processors of the already
created compositions are not used, however, they do remain present since they are a part
of the original detector composition. For new composed compositions, a new verdict pro-
cessor is necessary. In principle every detector can be cascaded, however, not all detectors
are sensitive for a certain context.

Figure 7.23: Serialized composition of composed detectors
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A VERDICT LUT TO CREATE FLEXIBLE SWITCHING LOGIC

The verdict LUT combines a detector’s output by using logic statements that determine the
hazard. A typical LUT1 for selecting hazards with logic is presented in figure 7.24.

Figure 7.24: Lookup table with logic to select for hazard

The verdict LUT acts as a flexible logic switch between the detectors and the concerning
hazard. Since the data from all detectors is available, the data can be used as a logic se-
lection mechanism. Aliases used in query language statements can be used in the logic
selection row. The output of a LUT can be seen on the right. This output selects the correct
hazard.
1This verdict LUT is for demonstrational purposes only, references in this LUT are examples only.
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7.3.2. HOW CAN MULTIPLE DETECTED POTENTIAL SOFTWARE HARM BE COM-
BINED INTO FINAL COMPOSITE REFACTORING ADVICE?

The final goal is to provide the refactorer with an advice. In this chapter, a flexible method
to provide an advice is introduced. The mechanism from figure 7.23 is reused and extended
with a LUT for an advice table, which is shown in figure 7.25.

Figure 7.25: A composite detector with verdict processing

The hazard select bus provides a hazard selection mechanism, which is controlled by the
verdict LUT. The verdict LUT 1 switches the correct hazard via hazard table 1. The advice
table is also switched via the hazard select bus. The advice table produces the correct ad-
vice with context parameters. These advice context parameters can be recognized by their
bracket and a question mark.

CONTEXT EMIT LUT
The context emit LUT1 provides for the correct detector context data towards the advice
mechanism. The context emit LUT controlled separately from the hazard selection.

1The hazard table in figure 7.25, the advice table, the Verdict LUT, and the context emit LUT are for demon-
strational purposes only, references in these tables are examples only.
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Figure 7.26: A context emit LUT

The right part of the context emit LUT can contain alias outputs of any query language
statement that is present in the used detectors. This can be seen in figure 7.26. The context
emit LUT is used to decouple for changes in the advice mechanism and for changes in the
query statements 1.

Short Context Advice Severity Context variables
AC-H1 Class is already defined Change name of class <class> Low <class?>

Table 7.30: Advice table for Add Class

THE ADVICE TABLES USE ALIASES FROM QUERY LANGUAGE STATEMENTS

The advice tables refer to the pseudo-AST subjects. An example advice table can be seen
in table 7.30. If a context variable, like <class?> is described in an advice table, the advice
mechanism should expect an alias to a query language statement that delivers class sub-
jects as an output. The advice mechanism should therefore not be sensitive for wrong AST
subjects. By using this flexible mechanism, advice tables context variables are decoupled
from statement alias names, since both are applicable for change.

ADVICE TABLES FOR ALL KNOWN HAZARDS

The advice tables for all known hazards have been defined and can be seen in Appendix C
of this document. These tables are organized by their hazards and provide for the hazard
context. The tables provide for a hazard advice template with context variables which will
be replaced by subjects from the context emit LUT. ie. The advice template "This class
<class?> is in use." has context variable <class?> which will get replaced by the name of the
class. The tables also provide for a severity tag, which makes it possible to prioritize hazards
when there are multiple hazards defined. The coupling between the context variable and
the aliases is performed by the context emit LUT.

1This motivates the abstract design suggestion about to serially communicate the detector’s output to the
verdict processor.
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7.3.3. VALIDATION FOR THE MICROSTEP THEORY
The Rename method mechanics from fowler’s refactoring mechanics will be used to vali-
date the presence detection mechanism of hazardous code fragments.

Figure 7.27: Rename method mechanics Fowler

When transformed to microsteps, the following microsteps are needed to replace the add
and/or remove mechanics from 7.27:
• Microstep M1 - Add Method. with a new name and the old body.
• Refactoring step RS1: Change references from the old method to the new method.
• Microstep M2 - Remove Method, remove the old method.

Example 7.1: The mechanics transformed to microsteps
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7.3.4. VALIDATION FOR THE DETECTOR THEORY
The code example in figure 7.28 will be used to test the mechanisms.

Figure 7.28: Rename method test code

The microstep transformation of example 7.1 will be applied to this test code in figure 7.28.
The refactoring activity to be performed is a rename method on the method testMeX in
ClassX. The new method name will be "testMeY"

Before this action takes place, the Add Method AM-H hazards will be tested. These hazard
tables can be found in Appendix C. The hazards with a severity beyond Low will be tested
first, which is AM-H2. Hazards with the same severity can be tested in random order.

To test for hazard AM-H2, the detector which exists out of query language statements AM-
H2-HCPD has to be executed. This detector delivers an empty list which equals !Call-
SubToSiginSupNoKeyAM, since there are no superclasses.

The next hazard is AM-H1, which executes AM-H1-HCPD. This detector delivers an empty
list, which equals !MethodAlreadyDefinedInClass, since there is no other method in this
class with the name "TestMeY".

No advice mechanism is triggered since there are no matches in the LUT entries, so no haz-
ard and no advice is selected. The Add method LUTs tables can be found in Appendix D in
Tables 31 and 32.
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Since all detectors for the M1 add Method microstep passed, the Add Method microstep
with a new name and old body can be applied safely without software harm. This tem-
porarily creates similar methods with different names.

Figure 7.29: Rename method test code

The refactoring step RS1 is executed and the caller testMeX(100) to the old method in
method anotherMethod() is changed to call the new method testMeY(100). The microstep
M2 will be performed, but before this microstep is performed the Remove Method RM-H
Hazards will be tested for. The major severity hazards will be tested first, which is RM-H2
for the Remove Method microstep (Appendix C).

RM-H2 executes the RM-H2-HCPD which detects hazardous code fragment presence. This
detector yields an empty list !CallSubToSiginSupNoKeyAM, since there are no superclasses.
The remaining hazards of the same severity level can be tested in random order.

RM-H3 executes the RM-H3-HCPD, which yields an empty list !MethodStatDefDefInInter-
fAM since there is no interface.

RM-H1 executes RM-H1-HCPD, which yields an empty list. The verdict LUT and the con-
text emit LUT are not triggered. The verdict LUT does not select a hazard on the hazard
select bus and the context emit LUT does not emit context towards the advice mechanism.

Since all detectors for the M2 remove Method microstep passed, the Remove Method mi-
crostep can be applied safely without software harm.
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This leads to the following result in figure 7.30

Figure 7.30: Final result after refactoring

To further demonstrate that the mechanism works, assume the hypothetical situation
where The M1 microstep succeeded successfully, but the refactorer forgot to perform refac-
toring step RS1, which comprehends to change the caller in method anotherMethod() from
testMeX(100) to the new method testMeY(100). So that this caller is incorrect.

What happens is that RM-H1 executes RM-H1-HCPD, which yields an AST reference to the
caller testMeX(100); in the method "anotherMethod(). The verdict LUT and the context
emit LUT ( table 33 Appendix D) are triggered by FindCallersToSignature2BRemoved. The
verdict LUT selects the RM-H1 hazard on the hazard select bus. The context emit LUT emits
the alias FindCallersToSignature2BRemoved towards the advice mechanism.

The advice mechanism renders the hazard and the advice:
"Callers to method became incorrect after method change/removal"
The advice is to:
"Change caller(s) TestMeX(100)" 1.

RM-H2 has to be detected, so RM-H2-HPCD is executed which yields an empty list since
there is no inheritance tree. No extra advice is rendered.

RM-H3 has to be detected, so RM-H3-HPCD is executed which yields an empty list since
there is no interface. No extra advice is rendered.

The refactorer now corrects the error and repeats the M2 microstep until the advice
mechanism no longers produces an advice or flags for issues.

1During the implementation of the advice mechanism, this advice should be expanded with extra informa-
tion, like "change caller(s) TestMeX(100) in method "anotherMethod" on line xxx.
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8
CONCLUSION

The main research question was divided into six partial questions.
"How can we provide for a refactoring advice based on: the performed refactoring

activity, and the source code under refactoring?"

The subquestions were:

RQ1: How can a hazardous code fragment be described in an easy to comprehend
manner?

The specially designed query language based on the pseudo-AST repre-
sentation created a possibility to describe code relationally. In chapter 7.1
a flexible and comprehensible method was described how to create haz-
ardous code pattern descriptions with the help of the query language.

RQ2: How can we transform Fowler's refactoring mechanic steps into microsteps?
The microsteps were derived from Fowler’s mechanics without issues. Chap-
ter 7.2.1 showed that most changes directed from the mechanics impli-
cate a cascade of remove- and add microstep action. By reducing the
steps into more atomics microsteps, a more detailed hazard detection can
be performed and a better advice can be provided.
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RQ2.1: What will the hazard(s) of a particular microstep be?
In chapter 7.2.2, the hazards were derived on a microstep level and archived
in hazard tables accompanied with their microstep. The coverage of the
hazards is not complete and is an ongoing task since not all hazards were
known during this research.

RQ2.2: Which hazardous code pattern descriptions are needed for each microstep's
induced hazard to detect potential software harm?

In chapter 7.2.3 the query language has proven to be very powerful in cre-
ating hazardous code pattern descriptions to detect the presence of haz-
ardous code fragments in the source code entity. Hazardous code pat-
tern descriptions can be expressed in a very precise and structured man-
ner that resembles the use of formulas in mathematics. The hazardous
code pattern descriptions are linked to a trigger event in separate tables
for each microstep. This collection of harmful trigger events will be used
as detectors in the advice mechanism. The harmful-trigger-event is trig-
gered by the to-be-performed microstep.

RQ3: How can hazardous code fragments be detected in a source code entity �exi-
bly?

The hazardous code pattern descriptions that are part of a detector, can
be cascaded in a loosely coupled manner. Chapter 7.3.1 showed that the
data of each detector is transmitted to the next detector, where it can be
used as input data and is transparently transmitted through each detector
towards the verdict LUT. This mechanism decouples the decision mech-
anism from the collection of facts. The serial transmission of hazardous
code presence detector data is an abstraction, which means that any form
of data transmission is suitable during implementation, as long as all haz-
ardous code presence detector data is available for the verdict mecha-
nism. Due to the separation of fact collection and decision making, the
reuse of detectors is strongly simplified. The verdict LUT also eases the
creation of future detector design via no-code or low-code tools.
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RQ3.1: How can multiple detected potential software harm be combined into a �nal
composite refactoring advice?

The detector is expanded with an advise rendering mechanism. This mech-
anism consists out of a context emit LUT an advice table and a hazard ta-
ble. The context emit LUT decouples the advice context selection from
the verdict mechanism. Chapter 7.3.2 showed that this design feature
has the purpose to decouple the changes in the hazardous code presence
detectors and the advice mechanism. The advice tables are organized
based on microstep induced hazards. The hazard tables and the Advice
tables are separated to decouple for changes in the advice layout and for
changes in the hazard definitions. Multiple detectors can be created from
just one composed detector, just by changing their verdict- and context
emit LUT, the advice tables, and the hazard tables. A composite advice is
created by cascading the correct presence detectors, selecting the correct
facts from the presence detectors, and an entry in the advice- and hazard
tables. By using this method, multiple detected potential software harm
can be combined into a final refactoring advice in a highly flexible man-
ner.
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9
RECOMMENDATIONS AND FUTURE WORK

This chapter will elaborate on the subjects which require further study.
Future research directions and recommendations:

• Refactoring does not necessarily prevent architectural decay: Fowler’s refactoring
mechanics have the predicate to be behavior preserving, which can be seen in chap-
ter 5.1.1. Should refactoring be conservating the software architecture as well? This
could be another predicate that is above the predicate behavior preserving. This
means another orchestration mechanism on top of the presented methods from this
study.

• Enhance the advice mechanism: The advice mechanism in this thesis is quite ad-
vanced, however, it still misses some functionality. The detectors collect facts from
the AST representation and communicate these facts towards the advice mechanism.
However, for absolute flexibility, it should be possible to collect new facts based on
the facts offered by the detectors. For example: when the detectors detect unchanged
callers, the detector communicates a list of AST nodes that represent these callers.
For the advice mechanism, it should be possible to determine if these callers are in a
method with a certain name. As it is currently designed, these facts have to be com-
municated by the detectors, which means that presenting new facts in a refactoring
advice means new functionality in the detectors. This coupling should be reduced by
a fact investigator mechanism, which is in between the detectors, the advice mech-
anism and has access to the code context. A diagram of a design can be found in
appendix F .7.5.

• The query language needs to be maintained: The query language needs to be kept
up to date and it needs to be maintained.

• Make the advice mechanism fault-tolerant: There is no fault detection in the advice
mechanism as it is currently designed. An empty list can mean that there was no de-
tection or it means a faulty designed detector. Or wrong data is used for a refactoring
advice. A correctly designed detector should not produce errors.

• Enhancement of the list of Hazardous Trigger Events: New hazardous code pat-
tern descriptions and possibly new microsteps will be needed. This list should be
expanded as necessary.
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• Find a fast method to generate an AST representation: Since the performance of the
designed method is depending on the AST representation, this mechanism should be
as fast as necessary.

• Find a method to link the AST representation to the source code: It is very comfort-
able to work in an IDE where an advice refers to line numbers. A method should be
found to link the AST representation to the source code.

• Provide a low code solution for composing detectors: The use of low-code ( or no-
code ) solutions with graphical drag and drop to construct detectors should be the
aim. In this way, there is no threshold to make new compositions and/or new detec-
tors without vast (programming) knowledge about the inner workings of the detec-
tors. Making them easy to modify, and provide for easy reuse is the aim.

• Provide a working and distributable prototype: A working and distributable proto-
type should be made to make sure that others can learn from it. The code should
be architecturally correct to ease understanding. Maintaining good documentation
on the sourcecode is mandatory. The prototype should respect the architecture pro-
vided in this thesis since it offers modular implementation.

• Real-time tracking of hazards The provided mechanism in this thesis should be ca-
pable of tracking hazards in real-time. The aliases in the presence detectors represent
pre-calculated lists, which has been a design choice. It is possible to enhance the
presence detectors with a trigger mechanism so that the detectors can provide data
on a run-basis. This trigger mechanism preferably detects for semantical or syntacti-
cal correctness of the code first.
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APPENDIX A - REFACTORING TOOL

In research done by Patrick de Beer, an automated refactoring tool was presented which
was using a solution based on a RAG. A RAG is capable of producing readable advice during
refactoring. To do so, the RAG combines the source code context, advice templates, and
decision logic into a single directed graph. A typical RAG can be seen in figure 1.

Figure 1: An extract-method RAG

In figure 1, a directed graph is seen with vertices, so-called Code Context Advice (CCA)’s,
and readable advice ( square boxes ). The Advice templates are concatenated in order of a
specific path through the graph. That specific path, or route, depends on the outcome of
the CCA’s. If a CCA is not valid, an alternative path must be present in the RAG. To prevent
deadlock issues in the implementation, an alternative path is often constructed by using
the negated CCA of the primary path, combined with empty advice. The vertice with the
negated CCA and the empty advice holds no action and produces no artifacts. The RAG
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consumes three input parameters, which are only used by the CCA’s in the RAG. The out-
put of the RAG is a concrete and readable advice. The input parameters for a RAG and thus
for a CCA are:

• The refactoring subject .
• The code context .
• A Code Context Property Detector (CCPD) .

The CCPD evaluates the code context of the refactoring subject for the presence of a
specific Code Context Property (CCP). A typical example CCP could be that a method
with a signature is declared only once in all class definitions.

The CCA produces concrete advice from these inputs. The CCPD will detect the pres-
ence of the CCP within the code context. From these facts, the advice is rendered by the
CCA with the help of an instantiator which assists in adding concrete values based on key-
words from the advice template provided by the CCPD. A conceptual representation of a
CCA can be seen in figure 2.

Figure 2: A CCA

The CCPD consumes the refactoring subject and the code context and generates an
advice template from it. To be more precise, a CCPD detects a CCP in the code context and
creates advice (template) from these parameters as can be seen in figure 3. The CCP’s are
mapped to an advice template that describes the risk associated with the refactoring action
and the code context.

Figure 3: A CCPD

A CCP mapped advice derives risks caused by refactoring action(s) for a specific code
context and provides solutions and possible alternatives. This differs from Opdyke’s danger
avoidance approach. A typical CCP mapped advice can be seen in table 1 where the danger
caused by a refactoring risk is explained and a possible solution is raised.
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CCP Advice
NameHiding - Local variable hides class field The code you extract contains variables

X/Y/Z that are hiding fields in your class.
Start by renaming your variables. This will
prevent those variables in your extracted
code will use accidentally class fields i.s.o.
the local variable. The compiler will happily
compile if you forget them.

SingleArgument - Single argument must be
passed to extracted code

Variable X is used in your new method and as-
signed a value before your method is called.
Copy argument declaration for ArgumentX as
an input parameter into your new method

Table 1: A subset of the list of CCP’s mapped to advice (Risks).

Typical CCP’s were described by Patrick de Beer in his research. Each specific refactor-
ing needs a specific set of CCP’s. For example, if a rename method refactoring would be
performed, the refactorer must know if either the method to be renamed was defined only
once, or multiple times. Discovering these method definitions, are typical CCP’s. Patrick
de Beer demonstrated that two different refactorings use different sets of CCP’s. In these
presented sets, the CCP’s per refactoring are unique, which can be seen in figures 4 and 5.

Figure 4: A CCP extract method set.

Figure 5: A CCP rename method set

A typical, although quite complex RAG can be seen in figure 6. This RAG’s purpose
is to provide advice while performing an extract method refactoring. The negated vertex
CC Ah:N Hi in the top of the RAG is used to make the software implementation of the RAG
easier, by preventing deadlock or timelock issues. The CCP’s for this RAG can be seen in fig-
ure 4. The RAG presented by Patrick has an interesting vertex worth looking at. The vertex
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CCA hZ Ai (empty) CCA hZ Ri detects for methods with no arguments and not returning any
values. A situation, where a method without arguments can return a value, like refactoring
the method with the definition double givePI_asNumber(void ), would in this RAG lead to
a timelock or deadlock when implemented as software. This illustrates how complex an
automated advice mechanism for a rather simple refactoring action can become.

Figure 6: An extract-method RAG
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APPENDIX B - ADD A PARAMETER TO A

METHOD

Figure 7: add parameter to method example before refactoring

We apply the mechanics from fig 8, from Fowler to this code example in figure 7.
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Figure 8: The mechanics for adding a parameter to a method.

The steps of the mechanics marked in red "declare a new method with the added pa-
rameter" and " Find all references to the old method and change them to refer to the new
one" is not program behavior preserving. Adding the method in the subclass will cause re-
definition and the call to the method test(int) in the superclass will now call to the newly re-
defined method in the subclass. The refactorer does not know that this method call refers to
the method in the superclass. Changing the old reference and change it to the new method,
will create a double fault in this example. Both faults create program behavior preservation
problems 8.
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Figure 9: Remove parameter from method example after refactoring.
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APPENDIX C - FULL-BLOWN AST
REPRESENTATION OF THE CODE FRAGMENT

EXAMPLE IN FIGURE 5.4

Figure 10: Full-blown AST representation of the code fragment example from figure 5.4 derived with ExtendJ
Explorer.
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APPENDIX C - ADVICE TABLES FOR

MICROSTEP INDUCED HAZARD

For the Add Class hazards, the advice table is presented in table 2. The <class?> context is
provided by the detector via the Context Emit LUT.

.1. ADVICE TABLES

.1.1. ADD CLASS

Short Context Advice Severity Context variables
AC-H1 Class is already defined Change name of class <Class?> Low <class?>

Table 2: Advice table for Add Class

.1.2. REMOVE CLASS
For the Remove Class hazards the advice table is presented in table 3. The <Instantiation?>,
<Class?>, <Field?>, <Caller?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables

RC-H1-1 Class still instantiated Remove instantiation <In-
stantiation?> or don’t re-
move class <Class?>

Low
<Instantiation?>

<Class?>

RC-H1-2 Class still referenced Remove field reference
<field?> or don’t remove
class

Low <Field?>

RC-H1-3 Caller to method in class change caller <Caller?> Low <Caller?>
RC-H2-1 ChildClass is part of in-

herritance tree
Do not rename <class?> Low <Class?>

RC-H2-2 Superclass is part of in-
herritance tree.

Do not rename <class?> Low <Class?>

RC-H3 Static method, Inner
static class still called by
caller

Static Method referenced
by <caller?> is still being
used. Move static method
to separate class or do
not rename class or move
functionality towards use

Low <Caller?>

RC-H4 Class is renamed possi-
ble design pattern bro-
ken

do not rename abstract
class <class?>

Low <Class?>

Table 3: Advice table for Remove Class
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.1.3. RENAME CLASS
For the Rename Class hazards, the advice table is presented in table 4. This table is a com-
bination of the remove and the add microstep hazards. The <Instantiation?>, <Class?>,
<Field?>, <Caller?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables

RNC-H1-1 Old class still instanti-
ated

Rename instantiation
<Instantiation?> or don’t
rename class <Class?>

Low
<Instantiation?>

<Class?>

RNC-H1-2 Class still referenced Rename field reference
<field?> or don’t rename
class

Low <Field?>

RNC-H1-3 Caller to method in class change caller <Caller?> Low <Caller?>
RNC-H2-1 ChildClass is part of in-

herritance tree
Do not rename <class?> Low <Class?>

RNC-H2-2 Superclass is part of in-
herritance tree.

Do not rename <class?> Low <Class?>

RNC-H3 Static method, Inner
static class still called by
caller

Static Method referenced
by <caller?> is still being
used. Move static method
to separate class or do
not rename class or move
functionality towards use

Low <Caller?>

RNC-H4 Class is renamed, possi-
ble design pattern bro-
ken

do not rename abstract
class <class?>

Low <Class?>

RNC-H5 New name of class is al-
ready present

Please use other name for
<class?>, since that name
is in use

Low <Class?>

Table 4: Advice table for Rename Class
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.1.4. ADD ATTRIBUTE
For the Add Attribute hazards, the advice table is presented in table 5. The <field?> context
is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
AA-H1 Attribute already de-

fined
Use other attribute name
for <Field?>

Low <Field?>

AA-H2 Inner-/outer class at-
tribute redefinition (
Attribute from outer
class is used in inner
class and a new attribute
with the same name and
type is added to inner
class )

Use another attribute
name for <Field?>

Major <Field?>

AA-H3 An inheritance re-
defined attribute in
Subclass ( Attribute from
superclass is used in sub
class and new attribute
with same name and
type is add to subclass)

Use another attribute
name for <Field?>

Major <Field?>

Table 5: Advice table for Add Attribute

xii



.1.5. REMOVE ATTRIBUTE
For the Remove Attribute hazards, the advice table is presented in table 6. The <Fieldas-
signment?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
AA-H1 Not all users of attribute

are aware of removal
Change assignment <Fiel-
dassignment?>

Low <Fieldassignment?>

AA-H2 Inner-/outer class at-
tribute redefinition (
when removed from
inner )

Change inner attribute
name for assignment
<Fieldassignment?> in
inner class.

Major <Fieldassignment?>

AA-H3 Inherritance redefined
attribute in Subclass
( Superclass Attribute
used after removal)

Use other attribute name
for assignment <Fieldas-
signment?> in subclass

Major <Fieldassignment?>

Table 6: Advice table for Remove Attribute
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.1.6. RENAME ATTRIBUTE
For the Rename Attribute hazards, the advice table is presented in table 7. This table is
a combination of the remove and the add microstep hazards. The <Fieldassignment?>,
<Field?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables

RNA-H1 Not all users of at-
tribute are aware of
removal

Update assignment(s)
<Fieldassignment?> to
<field?>

Low
<Fieldassignment?>

<field?>

RNA-H2 Inner-/outer class at-
tribute redefinition (
when removed from
inner )

Change attribute name
for attribute <Field?> in
inner class and update
fieldassignment <fieldas-
signment?> to that new
name.

Major
<Field?>

<Fieldassignment?>

RNA-H3 Inherritance rede-
fined attribute in
Subclass ( Superclass
Attribute used after
removal)

Change attribute name
for attribute <Field?> in
inner class and update
fieldassignment <fieldas-
signment?> to that new
name.

Major
<Field?>

<Fieldassignment?>

RNA-H4 Attribute already de-
fined

Attribute <field?> is al-
ready defined at <field?>

Low
<Field?>
<Field?>

Table 7: Advice table for Rename Attribute
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.1.7. ADD METHOD
For the Add Method hazards, the advice table is presented in table 8. The <Caller?>, <Method?>
context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
AM-H1 Method already de-

fined
Change method name
<Method?> to another
name

Low <Method?>

AM-H2 Inherritance Redefined
Method in Subclass.
caller from subclass
calls Subclass method
used after adding a
parameter to subclass
method, instead of
superclass method.

Change method
<Method?> name

Major <Method?>

Table 8: Advice table for Add method
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.1.8. REMOVE METHOD
For the Remove Method hazards, the advice table is presented in table 9. The <Caller?>,
<Method?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
RM-H1 Callers to method be-

came incorrect after
method change/re-
moval

change callers <Caller?> Low <Caller?>

RM-H2 Inherritance Redefined
Method in Subclass
( Superclass method
used after removal ) .

Change method
<Method?> name

Major <Method?>

RM-H3 Method defined in in-
terface

redefiniton of method
<Method?> do not re-
move

Low <Method?>

Table 9: Advice table for Remove method
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.1.9. RENAME METHOD
For the Rename Method hazards, the advice table is presented in table 10. This table is a
combination of the remove and the add microstep hazards. The <Caller?>, <Signature?>,
<Method?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables

RNM-H1 Callers to method be-
come incorrect after
method rename

change callers <Caller?>
to call new method with
signature <Signature?>

Low
<Caller?>

<Signature?>

RNM-H2 Method already de-
fined

Change method name
<method?> because it
collides with <method?>
to another name

Low
<method?>
<method?>

RNM-H3 Inherritance Redefined
Method in Subclass
( Superclass method
used after rename ) .

Change method
<Method?> name and
change caller <Caller?>
from subclass to call to
new method name

Major
<Method?>
<Caller?>

RNM-H4 Method defined in in-
terface

redefiniton of method
<Method?> or inter-
face contract prohibits
change

Low <Method?>

Table 10: Advice table for Rename method

.1.10. ADD INTERFACE
For the Add Interface hazards, the advice table is presented in table 11. The <Interface?>
context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
AI-H1 Interface already de-

fined
change interface <Inter-
face?> name

Low <Interface?>

Table 11: Advice table for Add Interface
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.1.11. REMOVE INTERFACE
For the Remove Interface hazards, the advice table is presented in table 12. The <Inter-
face?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
RI-H1 Interface still in use by

class
Do not remove interface
<Interface?> or do not
use interface contract.

Low <Interface?>

RI-H2 Interface still in use by
other interface

Move interface <Inter-
face?> to other interface,
or do not remove.

Low <Interface?>

RI-H3 Interface holds stat-
ic/default implemen-
tations

Move implementations
in <Interface?> towards
use.

Low <Interface?>

Table 12: Advice table for remove interface
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.1.12. RENAME INTERFACE
For the Rename Interface hazards, the advice table is presented in table 13. This table is
a combination of the remove and the add microstep hazards. The <Interface?>, <Class?>,
<Method?>,<Param?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables

RNI-H1 Interface still in use by
class

Do not rename interface
<Interface?> or change
implements in class
<Class?> to <Interface?>.

Low
<Interface?>

<Class?>
<Interface?>

RNI-H2 Interface still in use by
other interface

Move interface <Inter-
face?> to other interface,
do not remove ore re-
name implements in in-
terface <Interface?>.

Low
<Interface?>
<Interface?>

RNI-H3 Interface holds stat-
ic/default implemen-
tations

Move <method?> imple-
mentations towards use.

Low <method?>

RNI-H4 Interface already de-
fined

Change interface <inter-
face?> name

Low <Interface?>

Table 13: Advice table for rename interface
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.1.13. ADD PARAMETER
For the Add Parameter hazards, the advice table is presented in table 14. The <Caller?>,
<Method?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
AP-H1 Callers to method be-

came incorrect after
adding parameter to
method.

change callers <Caller?> Low <Caller?>

AP-H2 Method already de-
fined after adding a
parameter

Change method name
<Method?> to another
name

Low <Method?>

AP-H3 caller from subclass
calls Subclass method
instead of superclass
method, after adding
a parameter to the
method in the sub-
class.

Change method
<Method?> name in
subclass

Major <Method?>

AP-H4 Method definition in
interface. Interface
contract broken after
adding a parameter.

deprecate old method
and create new method
with body of old method
for <Method?>

Low <Method?>

AP-H5 Parameter with same
name already exists.

Change parameter name
of <Param?>

Low <Param?>

AP-H6 Field with same name
is already in use in
method.

Change parameter name
of <Param?>

Low <Param?>

Table 14: Advice table for Add Parameter
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.1.14. REMOVE PARAMETER
For the Remove Parameter hazards, the advice table is presented in table 15. The <Caller?>,
<Method?>, <Fieldaccess?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
RP-H1 Callers to method be-

came incorrect after
removing a parameter
from method.

change callers <Caller?> Low <Caller?>

RP-H2 Method already de-
fined after removing
a parameter from
method

Change method name
<Method?> to another
name

Low <Method?>

RP-H3 caller from subclass
calls Subclass method
instead of superclass
method, after remov-
ing a parameter from
the method in the
subclass.

Change method
<Method?> name in
subclass

Major <Method?>

RP-H4 Method definition in
interface. Interface
contract broken after
removing a parameter.

deprecate old method
and create new method
with body of old method
for <Method?>

Low <Method?>

RP-H5 Parameter is still in use
in Method.

Rename fieldaccess
<fieldaccess?> in
method <method?>

Low
<Fieldaccess?>
<Method?>

Table 15: Advice table for Remove Parameter
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.1.15. RENAME PARAMETER
For the Rename Parameter hazards, the advice table is presented in table 16. This table is
a combination of the remove and the add microstep hazards. The <Caller?>, <Signature?>,
<Method?> context is provided by the detector via the Context Emit LUT.

Short Context Advice Severity Context variables
RNP-H1 one or two parameter

names are identical
change new parameter
name <param?>

Low <Param?>

RNP-H2 Parameter name is
already in use inside
method

Change parameter name
<param?>

Low <Param?>

RNP-H3 Cannot rename pa-
rameter since old
parameter is still refer-
enced inside method.

Change parameter name
<param?>

Low <Param?>

Table 16: Advice table for Rename Parameter
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APPENDIX D - DETECTOR RECIPES FOR

DETECTORS FOR SINGLE MICROSTEPS

The detector recipes comprehends filling tables with the correct information and providing
a hazardous code presence detection algorithm designed with the query language.
For all "atomic" detectors, detector type A is used, see figure 11.

Figure 11: Detector type A

The atomic detectors are detectors that are preliminary used for single microsteps, like
add method or remove method. The verdict LUT and the context emit LUT can be found
in this appendix. The advice table can be found in Appendix C. The hazard tables can be
found in section 7.2.2 in this document.
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.2. LUTS FOR DETECTORS FOR SINGLE MICROSTEPS

.2.1. ADD CLASS
A preliminary notice, "!alias" represents an empty list. "alias" represents a list with one or
more items.
Tables for the following hazard AC-H1, Add Class Hazard 1.

Verdict LUT Context Emit LUT
Detector output Hazard

ClassInPackage AC-H1

Detector output Context

ClassAlreadyInPackage <ClassAlreadyInPackage?>

Table 17: Verdict LUT and Context emit LUT for Add Class hazard AC-H1

.2.2. REMOVE CLASS
Tables for the following hazard RC-H1-1, Remove Class Hazard 1-1.

Verdict LUT Context Emit LUT

Detector output Hazard

findFieldInstantiationToClass RC-H1-1

Detector output Context

findFieldInstantiationToClass
<findFieldInstantiationToClass?>

<iClass2BRemoved?>

Table 18: Verdict LUT and Context emit LUT for Remove Class hazard RC-H1-1

Tables for the following hazard RC-H1-2, Remove Class Hazard 1-2.

Verdict LUT Context Emit LUT
Detector output Hazard

FindFieldReferenceToClass RC-H1-2

Detector output Context

FindFieldReferenceToClass <FindFieldReferenceToClass?>

Table 19: Verdict LUT and Context emit LUT for Remove Class hazard RC-H1-2

Tables for the following hazard RC-H1-3, Remove Class Hazard 1-3.

Verdict LUT Context Emit LUT
Detector output Hazard

AllCallersToMyClass RC-H1-3

Detector output Context

AllCallersToMyClass < AllCallersToMyClass?>

Table 20: Verdict LUT and Context emit LUT for Remove Class hazard RC-H1-3

Tables for the following hazard RC-H2-1, Remove Class Hazard 2-1.

Verdict LUT Context Emit LUT
Detector output Hazard

IfEmptyNoSuperclassInTree RC-H2-1

Detector output Context

IfEmptyNoSuperclassInTree <IfEmptyNoSuperclassInTree?>

Table 21: Verdict LUT and Context emit LUT for Remove Class hazard RC-H2-1

Tables for the following hazard RC-H2-2, Remove Class Hazard 2-2.
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Verdict LUT Context Emit LUT
Detector output Hazard

IfEmptyNoSubclassInTree RC-H2-2

Detector output Context

IfEmptyNoSubclassInTree <IfEmptyNoSubclassInTree?>

Table 22: Verdict LUT and Context emit LUT for Remove Class hazard RC-H2-1

Tables for the following hazard RC-H3, Remove Class Hazard 3.

Verdict LUT
Detector output Hazard

ListOfCallersToStaticMethodInStaticInnerClass RC-H3

Context Emit LUT
Detector output Context

ListOfCallersToStaticMethodInStaticInnerClass <ListOfCallersToStaticMethodInStaticInnerClass?>

Table 23: Verdict LUT and Context emit LUT for Remove Class hazard RC-H3

Tables for the following hazard RC-H4, Remove Class Hazard 4.

Verdict LUT Context Emit LUT
Detector output Hazard

FindClassAbstractModifier RC-H4

Detector output Context

FindClassAbstractModifier <FindClassAbstractModifier?>

Table 24: Verdict LUT and Context emit LUT for Remove Class hazard RC-H2-1

.2.3. ADD ATTRIBUTE
Tables for the following hazard AA-H1, Add Attribute Hazard 1.

Verdict LUT Context Emit LUT
Detector output Hazard

FindFieldWithNameInClass AA-H1

Detector output Context

FindFieldWithNameInClass <FindFieldWithNameInClass?>

Table 25: Verdict LUT and Context emit LUT for Add Attribute hazard AA-H1

Tables for the following hazard AA-H2, Add Attribute Hazard 2.

Verdict LUT
Detector output Hazard

ListAssignmentsOfFieldsInClassAA AA-H2
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Context Emit LUT
Detector output Context

ListAssignmentsOfFieldsInClassAA <ListAssignmentsOfFieldsInClassAA?>

Table 26: Verdict LUT and Context emit LUT for Add Attribute hazard AA-H2

Tables for the following hazard AA-H3, Add Attribute Hazard 3.

Verdict LUT
Detector output Hazard

AssignFieldsInSupOfClassAA AA-H3

Context Emit LUT
Detector output Context

AssignFieldsInSupOfClassAA <AssignFieldsInSupOfClassAA?>

Table 27: Verdict LUT and Context emit LUT for Add Attribute hazard AA-H3

.2.4. REMOVE ATTRIBUTE
Tables for the following hazard RA-H1, Remove Attribute Hazard 1.

Verdict LUT Context Emit LUT
Detector output Hazard

AssignToOldAttrRef RA-H1

Detector output Context

AssignToOldAttrRef <AssignToOldAttrRef?>

Table 28: Verdict LUT and Context emit LUT for Remove Attribute hazard RA-H1

Tables for the following hazard RA-H2, Remote Attribute Hazard 2.

Verdict LUT
Detector output Hazard

ListAssignFieldsInClassRA RA-H2

Context Emit LUT
Detector output Context

ListAssignFieldsInClassRA <ListAssignFieldsInClassRA?>

Table 29: Verdict LUT and Context emit LUT for Remove Attribute hazard RA-H2
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Tables for the following hazard RA-H3, Remove Attribute Hazard 3.

Verdict LUT
Detector output Hazard

AssignFieldsInSupClassRA RA-H3

Context Emit LUT
Detector output Context

AssignFieldsInSupClassRA < AssignFieldsInSupClassRA?>

Table 30: Verdict LUT and Context emit LUT for Remove Attribute hazard RA-H3

.2.5. ADD METHOD
Tables for the following hazard AM-H1, Add Method Hazard 1.

Verdict LUT
Detector output Hazard

MethodAlreadyDefinedInClassAM AM-H1

Context Emit LUT
Detector output Context

MethodAlreadyDefinedInClassAM <MethodAlreadyDefinedInClassAM?>

Table 31: Verdict LUT and Context emit LUT for Add Method hazard AM-H1

Tables for the following hazard AM-H2, Add Method Hazard 2.

Verdict LUT Context Emit LUT
Detector output Hazard

CallSubToSigYinSuperNoKeyAM AM-H2

Detector output Context

CallSubToSiginSupNoKeyAM <CallSubToSiginSupNoKeyAM?>

Table 32: Verdict LUT and Context emit LUT for Add Method hazard AM-H2
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.2.6. REMOVE METHOD
Tables for the following hazard RM-H1, Remove Method Hazard 1.

Verdict LUT
Detector output Hazard

FindCallersToSignature2BRemoved RM-H1

Context Emit LUT
Detector output Context

FindCallersToSignature2BRemoved <FindCallersToSignature2BRemoved?>

Table 33: Verdict LUT and Context emit LUT for Remove Method hazard RA-H1

Tables for the following hazard RM-H2, Remove Method Hazard 2.

Verdict LUT Context Emit LUT
Detector output Hazard

CallSubToSiginSupNoKeyRM AM-H3

Detector output Context

CallSubToSiginSupNoKeyRM <CallSubToSiginSupNoKeyRM?>

Table 34: Verdict LUT and Context emit LUT for Remove Method hazard RM-H2

Tables for the following hazard RM-H3, Remove Method Hazard 3.

Verdict LUT
Detector output Hazard

MethodStaticDefaultDefInInterfaceRM RM-H3

Context Emit LUT
Detector output Context

MethodStaticDefaultDefInInterfaceRM <MethodStaticDefaultDefInInterfaceRM?>

Table 35: Verdict LUT and Context emit LUT for Remove Method hazard RM-H3

.3. ADD INTERFACE
Tables for the following hazard AI-H1, Add Interface Hazard 1.

Verdict LUT Context Emit LUT
Detector output Hazard

NewInterfaceAlreadyDefined AI-H1

Detector output Context

NewInterfaceAlreadyDefined <NewInterfaceAlreadyDefined?>

Table 36: Verdict LUT and Context emit LUT for Add Interface hazard AI-H1
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.4. REMOVE INTERFACE
Tables for the following hazard RI-H1, Remove Interface Hazard 1.

Verdict LUT
Detector output Hazard

ClassThatImplInterfaceToRemove RI-H1

Context Emit LUT
Detector output Context

ClassThatImplInterfaceToRemove <ClassThatImplInterfaceToRemove?>

Table 37: Verdict LUT and Context emit LUT for Remove Method hazard RI-H1

Tables for the following hazard RI-H2, Remove Interface Hazard 2.

Verdict LUT
Detector output Hazard

InterfaceThatImplInterfaceToRemove RI-H2

Context Emit LUT
Detector output Context

InterfaceThatImplInterfaceToRemove <InterfaceThatImplInterfaceToRemove?>

Table 38: Verdict LUT and Context emit LUT for Remove Method hazard RI-H2

Tables for the following hazard RI-H3, Remove Interface Hazard 3.

Verdict LUT Context Emit LUT
Detector output Hazard

StaticInterfaceImplInUse RI-H3

Detector output Context

StaticInterfaceImplInUse <StaticInterfaceImplInUse?>

Table 39: Verdict LUT and Context emit LUT for Remove Interface hazard RI-H3

.5. ADD PARAMETER
Tables for the following hazard AP-H1, Add Parameter Hazard 1.

Verdict LUT
Detector output Hazard

FindCallersToSignatureWithNewParam AP-H1
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Context Emit LUT
Detector output Context

FindCallersToSignatureWithNewParam <FindCallersToSignatureWithNewParam?>

Table 40: Verdict LUT and Context emit LUT for Add Parameter hazard AP-H1

Tables for the following hazard AP-H2, Add Parameter Hazard 2.

Verdict LUT
Detector output Hazard

MethodAlreadyDefinedInClassAP AP-H2

Context Emit LUT
Detector output Context

MethodAlreadyDefinedInClassAP <MethodAlreadyDefinedInClassAP?>

Table 41: Verdict LUT and Context emit LUT for Add Parameter hazard AP-H1

Tables for the following hazard AP-H3 Add Parameter Hazard 3.

Verdict LUT
Detector output Hazard

CallSubToSiginSupNoKeyAP AP-H3

Context Emit LUT
Detector output Context

CallSubToSiginSupNoKeyAP <CallSubToSiginSupNoKeyAP?>

Table 42: Verdict LUT and Context emit LUT for Add Parameter hazard AP-H3

Tables for the following hazard AP-H4, Add Parameter Hazard 4.

Verdict LUT Context Emit LUT
Detector output Hazard

MethodStatDefDefInInterfAP AP-H4

Detector output Context

MethodStatDefDefInInterfAP <MethodStatDefDefInInterfAP?>

Table 43: Verdict LUT and Context emit LUT for Add Parameter hazard AP-H4
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Tables for the following hazard AP-H5 Add Parameter Hazard 5.

Verdict LUT
Detector output Hazard

NameIsAlreadyPresentInParamListAP AP-H5

Context Emit LUT
Detector output Context

NameIsAlreadyPresentInParamListAP <iNameNew?>

Table 44: Verdict LUT and Context emit LUT for Add Parameter hazard AP-H5

Tables for the following hazard AP-H6 Add Parameter Hazard 6.

Verdict LUT
Detector output Hazard

ParamInUseByFieldAP AP-H6

Context Emit LUT
Detector output Context

ParamInUseByFieldAP <iNameNew?>

Table 45: Verdict LUT and Context emit LUT for Add Parameter hazard AP-H6

.6. REMOVE PARAMETER
Tables for the following hazard RP-H1, Remove Parameter Hazard 1.

Verdict LUT
Detector output Hazard

FindCallersToSignatureWithRemovedParamRP RP-H1

Context Emit LUT
Detector output Context

FindCallersToSignatureWithRemovedParamRP <FindCallersToSignatureWithRemovedParamRP?>

Table 46: Verdict LUT and Context emit LUT for Remove Parameter hazard RP-H1
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Tables for the following hazard RP-H2, Remove Parameter Hazard 2.

Verdict LUT
Detector output Hazard

MethodAlreadyDefinedInClassRP RP-H2

Context Emit LUT
Detector output Context

MethodAlreadyDefinedInClassRP <MethodAlreadyDefinedInClassRP?>

Table 47: Verdict LUT and Context emit LUT for Remove Parameter hazard RP-H1

Tables for the following hazard RP-H3 Remove Parameter Hazard 3.

Verdict LUT
Detector output Hazard

CallSubToSiginSupNoKeyRP RP-H3

Context Emit LUT
Detector output Context

CallSubToSiginSupNoKeyRP <CallSubToSiginSupNoKeyRP?>

Table 48: Verdict LUT and Context emit LUT for Remove Parameter hazard RP-H3

Tables for the following hazard RP-H4, Remove Parameter Hazard 4.

Verdict LUT Context Emit LUT
Detector output Hazard

MethodStatDefDefInInterfRP RP-H4

Detector output Context

MethodStatDefDefInInterfRP <MethodStatDefDefInInterfRP?>

Table 49: Verdict LUT and Context emit LUT for Remove Parameter hazard RP-H4

Tables for the following hazard RP-H5 Remove Parameter Hazard 5.

Verdict LUT
Detector output Hazard

ParamInUseInsideMethodRP RP-H5

Context Emit LUT
Detector output Context

ParamInUseInsideMethodRP
<ParamInUseInsideMethodRP?>

<iOldMethod?>

Table 50: Verdict LUT and Context emit LUT for Remove Parameter hazard RP-H5
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APPENDIX E - COMPOSITE DETECTOR

RECIPES FOR CASCADED MICROSTEPS

The detector recipes comprehend filling tables with the correct information and providing
a hazardous code presence detection algorithm designed with the query language.
For all composite detectors, detector type B is used, see figure 12.

Figure 12: Detector type B

The composite detectors are detectors that are used for cascaded microsteps, like re-
name method, or rename class. Rename microstep consist out of a cascaded Remove- and
Add microstep. The verdict LUT and the context emit LUT can be found in this appendix.
The advice table can be found in Appendix C. The hazard tables can be found in section
7.2.2 in this document.
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.7. LUTS FOR COMPOSITE DETECTORS FOR CASCADED MICROSTEPS
A preliminary notice, "!alias" represents an empty list. "alias" represents a list with one or
more items.

.7.1. RENAME CLASS
Tables for the following hazard RNC-H1-1, Rename Class Hazard 1-1. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT

Detector output Hazard

findFieldInstantiationToClass RNC-H1-1

Detector output Context

findFieldInstantiationToClass
<findFieldInstantiationToClass?>

<iClass2BRemoved?>

Table 51: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H1-1

Tables for the following hazard RNC-H1-2, Rename Class Hazard 1-2. Which is a cas-
cade of the Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

FindFieldReferenceToClass RNC-H1-2

Detector output Context

FindFieldReferenceToClass <FindFieldReferenceToClass?>

Table 52: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H1-2

Tables for the following hazard RNC-H1-3, Rename Class Hazard 1-3. Which is a cas-
cade of the Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

AllCallersToMyClass RNC-H1-3

Detector output Context

AllCallersToMyClass <AllCallersToMyClass?>

Table 53: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H1-3

Tables for the following hazard RNC-H2-1, Rename Class Hazard 2-1. Which is a cas-
cade of the Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

IfEmptyNoSuperclassInTree RNC-H2-1

Detector output Context

IfEmptyNoSuperclassInTree <IfEmptyNoSuperclassInTree?>

Table 54: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H2-1

Tables for the following hazard RNC-H2-2, Rename Class Hazard 2-2. Which is a cas-
cade of the Remove- and Add microsteps.
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Verdict LUT Context Emit LUT
Detector output Hazard

IfEmptyNoSubclassInTree RNC-H2-2

Detector output Context

IfEmptyNoSubclassInTree <IfEmptyNoSubclassInTree?>

Table 55: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H2-2

Tables for the following hazard RNC-H3, Rename Class Hazard 3. Which is a cascade of the
Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

ListOfCallersToStaticMethodInStaticInnerClass RNC-H3

Context Emit LUT
Detector output Context

ListOfCallersToStaticMethodInStaticInnerClass <ListOfCallersToStaticMethodInStaticInnerClass?>

Table 56: Verdict LUT and Context emit LUT for Remove Method hazard RNC-H3

Tables for the following hazard RNC-H4, Rename Class Hazard 4. Which is a cascade of the
Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

FindClassAbstractModifier RNC-H4

Detector output Context

FindClassAbstractModifier <FindClassAbstractModifier?>

Table 57: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H4

Tables for the following hazard RNC-H5, Rename Class Hazard 5. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

ClassAlreadyInPackage RNC-H5

Detector output Context

ClassAlreadyInPackage <ClassAlreadyInPackage?>

Table 58: Verdict LUT and Context emit LUT for Rename Class hazard RNC-H5

.7.2. RENAME ATTRIBUTE
Tables for the following hazard RNA-H1, Rename Attribute Hazard 1. Which is a cascade of
the Remove- and Add microsteps.
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Verdict LUT Context Emit LUT

Detector output Hazard

AssignToOldAttrRef RNA-H1

Detector output Context

StaticDefaultImpl
<AssignToOldAttrRef?>

<iIsAttributeToAdd?>

Table 59: Verdict LUT and Context emit LUT for Rename Attribute hazard RNA-H1

Tables for the following hazard RNA-H2, Rename Attribute Hazard 2. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT

Detector output Hazard

ListAssignFieldsInClassRA RNA-H2

Detector output Context

StaticDefaultImpl
<iIsAttributeToAdd?>

<ListAssignFieldsInClassRA?>

Table 60: Verdict LUT and Context emit LUT for Rename Attribute hazard RNA-H2

Tables for the following hazard RNA-H3, Rename Attribute Hazard 3. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT

Detector output Hazard

AssignFieldsInSupClassRA RNA-H3

Detector output Context

StaticDefaultImpl
<iIsAttributeToAdd?>

<AssignFieldsInSupClassRA?>

Table 61: Verdict LUT and Context emit LUT for Rename Attribute hazard RNA-H3

Tables for the following hazard RNA-H4, Rename Attribute Hazard 4. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT

Detector output Hazard

FindFieldWithNameInClass RNA-H4

Detector output Context

FindFieldWithNameInClass
<iIsAttributeToAdd?>

<FindFieldWithNameInClass?>

Table 62: Verdict LUT and Context emit LUT for Rename Attribute hazard RNA-H4

.7.3. RENAME METHOD
Tables for the following hazard RNM-H1, Rename Attribute Hazard 1. Which is a cascade
of the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

FindCallersToSignature2BRemoved? RNM-H1
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Context Emit LUT
Detector output Context

FindCallersToSignature2BRemoved?
< FindCallersToSignature2BRemoved?>

<iNewSignature?>

Table 63: Verdict LUT and Context emit LUT for Rename Method hazard RNM-H1

Tables for the following hazard RNM-H2, Rename Method Hazard 2. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT

Detector output Hazard

MethodAlreadyDefinedInClass RNM-H2

Detector output Context

StaticDefaultImpl
<iNewSignature?>

<MethodAlreadyDefinedInClass?>

Table 64: Verdict LUT and Context emit LUT for Rename Method hazard RNM-H2

Tables for the following hazard RNM-H3, Rename Method Hazard 3. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT

Detector output Hazard

CallSubToSiginSupNoKeyAM RNM-H3

Detector output Context

StaticDefaultImpl
<iNewSignature?>

<CallSubToSiginSupNoKeyAM?>

Table 65: Verdict LUT and Context emit LUT for Rename Method hazard RNM-H3

Tables for the following hazard RNM-H4, Rename Method Hazard 4. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

MethodStaticDefaultDefInInterface RNM-H4

Context Emit LUT
Detector output Context

MethodStaticDefaultDefInInterface <MethodStaticDefaultDefInInterface?>

Table 66: Verdict LUT and Context emit LUT for Remove Method hazard RNM-H4
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.7.4. RENAME INTERFACE
Tables for the following hazard RNI-H1, Rename Interface Hazard 1. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

ClassThatImplInterfaceToRemove RNI-H1

Context Emit LUT
Detector output Context

ClassThatImplInterfaceToRemove

<iInterFace2Remove?>

< ClassThatImplInterfaceToRemove?>

<iInterFace2Remove?>

Table 67: Verdict LUT and Context emit LUT for Rename Interface hazard RNI-H1

Tables for the following hazard RNI-H2, Rename Interface Hazard 2. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

InterfaceThatImplInterfaceToRemove RNI-H2

Context Emit LUT
Detector output Context

InterfaceThatImplInterfaceToRemove
<InterfaceThatImplInterfaceToRemove?>

<InterfaceThatImplInterfaceToRemove?>

Table 68: Verdict LUT and Context emit LUT for Rename Interface hazard RNI-H1

Tables for the following hazard RNI-H3, Rename Interface Hazard 3. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

StaticInterfaceImplInUse RNI-H3

Detector output Context

StaticInterfaceImplInUse <StaticInterfaceImplInUse?>

Table 69: Verdict LUT and Context emit LUT for Rename Interface hazard RNI-H3
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Tables for the following hazard RNI-H4, Rename Interface Hazard 4. Which is a cascade of
the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

NewInterfaceAlreadyDefined RNI-H4

Context Emit LUT
Detector output Context

NewInterfaceAlreadyDefined <NewInterfaceAlreadyDefined?>

Table 70: Verdict LUT and Context emit LUT for Rename Interface hazard RNI-H4

.7.5. RENAME PARAMETER
Tables for the following hazard RNP-H1, Rename Parameter Hazard 1. Which is a cascade
of the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

NameIsAlreadyPresentInParamListAP RNP-H1

Context Emit LUT
Detector output Context

NameIsAlreadyPresentInParamListAP <iNameNew?>

Table 71: Verdict LUT and Context emit LUT for Rename Parameter hazard RNP-H1

Tables for the following hazard RNP-H2, Rename Parameter Hazard 2. Which is a cascade
of the Remove- and Add microsteps.

Verdict LUT
Detector output Hazard

ParamInUseByFieldAP RNP-H2

Context Emit LUT
Detector output Context

ParamInUseByFieldAP <iNameNew?>

Table 72: Verdict LUT and Context emit LUT for Rename Parameter hazard RNP-H2
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Tables for the following hazard RNP-H3, Rename Parameter Hazard 3. Which is a cascade
of the Remove- and Add microsteps.

Verdict LUT Context Emit LUT
Detector output Hazard

ParamInUseInsideMethodRP RNP-H3

Detector output Context

ParamInUseInsideMethodRP <iNameNew?>

Table 73: Verdict LUT and Context emit LUT for Rename Parameter hazard RNP-H3

xl



APPENDIX F - AN IDEA FOR AN ENHANCED

ADVISE MECHANISM

The advice mechanism should be able to investigate facts indepent of the detectors. The
detectors deliver the lead(nodes), and the advice mechanism can investigate by using the
query language as can be seen in figure 13. In this example, the detectors deliver a list
callers (ast nodes ), but for the advice more information is necessary, like in which method
is that caller located? Or even, on which line in the source code.

Figure 13: An enhanced, and further decoupled, advise mechanism
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ACRONYMS

AST Abstract Syntax Tree. iii, ix, 1–3, 14, 26–40, 52, 61, 62, 68, 72, 73, 76, 77

CCA Code Context Advice. ii–v

CCP Code Context Property. iii, iv

CCPD Code Context Property Detector. iii

IDE Integrated Development Environment. 5

LUT Look Up Table. iv, x–xl, 63, 66–68, 70–72, 74, 75

RAG Refactoring Advice Graph. ii–v, 5, 7, 8
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