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Abstract. Clustering algorithms, pattern mining techniques and associated
quality metrics emerged as reliable methods for modeling learners’ performance,
comprehension and interaction in given educational scenarios. The specificity of
available data such as missing values, extreme values or outliers, creates a chal‐
lenge to extract significant user models from an educational perspective. In this
paper we introduce a pattern detection mechanism with-in our data analytics tool
based on k-means clustering and on SSE, silhouette, Dunn index and Xi-Beni
index quality metrics. Experiments performed on a dataset obtained from our
online e-learning platform show that the extracted interaction patterns were repre‐
sentative in classifying learners. Furthermore, the performed monitoring activi‐
ties created a strong basis for generating automatic feedback to learners in terms
of their course participation, while relying on their previous performance. In
addition, our analysis introduces automatic triggers that highlight learners who
will potentially fail the course, enabling tutors to take timely actions.

Keywords: Clustering quality metrics · Pattern extraction · k-means clustering ·
Learner performance

1 Introduction

Finding educational patterns reflective of learner’s performance represents a research
question of particular interest that has been addressed from different perspectives in
various contexts. As clustering has emerged as a de facto method for finding items that
naturally group together, there is a wide range of algorithms that can be used to classify
individual, differentiated mainly into three classes: hierarchical, non-hierarchical and
spectral.

In terms of available data, items may be represented by actors (e.g., students or tutors)
or learning assets (e.g., concepts, quizzes, assignments, etc.). Moreover, due to the
variety of e-learning platforms, there is also a wide variety of structured and well defined
input data, for example the PLSC DataShop [1] or the UCI Machine Learning Repository
Student Performance Data Set [2]. However, designing and running a clustering process
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on a particular dataset in order to find meaningful educational insights represents a
challenge.

In this paper we introduce an automatic feedback mechanism derived from pattern
extraction data analytics applied on educational traces. Our approach for finding patterns
is based on: (a) a continuous evaluation in terms of clustering quality metrics (CQM)
applied on data models generated by the k-means algorithm and (b) the automatic high‐
light and manual removal by means of visual inspection of outliers and extreme values.
From an educational perspective, generated patterns enable us to categorize new students
based on their continuous performance evaluation, thus providing automatic personal‐
ized feedback. In other words, our main contributions cover the following aspects:

1. Define a custom data analytics pipeline that identifies relevant clusters by usage of
clustering quality metrics (CQMs) in an educational context. The CQMs are imple‐
mented for Weka [3]. The current release does not support any standardized data
models as outputs (i.e., cluster assignments based on standard CQMs).

2. Develop a software tool suited for finding educational patterns and providing auto‐
matic feedback to both learners and tutors.

The paper continues with a detailed state of the art, followed by methods and results.
Afterwards, it discusses key findings derived from our dataset, points out strengths and
limitations of our approach, and provides a roadmap for future work centered on
increasing the efficacy of the educational tasks at hand.

2 Related Work

The quality of a clustering process is strongly related to the available dataset, the chosen
clustering algorithm, as well as the implemented CQMs. The domain specific training
dataset and the implemented quality metrics represent the building blocks for inter‐
preting results in correspondence to the proposed learning analytics task. Within our
experiments, we have opted to select a dataset from the Tesys e-learning platform [4].
As algorithm, we have used the k-means clustering [5] algorithm implemented in Weka
[3]. Weka also implements Expectation Maximization [6] and COBWEB [7] for hier‐
archical clustering, as well as DBSCAN [8], but the selected algorithm was most
adequate for our experiments in terms of visual representation.

However, the main drawback of Weka is the lack of implemented CQMs that would
enable an easy and reliable analysis of the clustering outcomes for various clustering
algorithms. Multiple CQMs are defined in literature and may be classified into various
types, depending on the underlying approach: similarity metrics, clustering evaluations,
clustering properties, distance measures, clustering distances, as well as cluster validity
measures.

First, Jackson, Somers and Harvey [9] define similarity metrics as a way to compute
coupling between two clusters. In contrast, Sneath and Sokal [10] cover the following
distance, association and correlation coefficients: Taxonomic (distance), Camberra
(distance), Jaccard (association), Simple matching (association), Sorensen-Dice (asso‐
ciation), and Correlation (correlation).
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Second, silhouette statistical analyses [11, 12] and visualization techniques have
been successfully used by Jugo, Kovačić and Tijan [13] as main analytics engine for the
cluster analysis of student activity in web-based intelligent tutoring systems.

Third, Hompes, Verbeek and van der Aalst [14] define specific clustering properties,
i.e., cohesion, coupling, balance and clustering score. Their methodology evaluates
weighted scoring functions that grade a clustering activity with a score between 0 (bad
clustering) and 1 (good clustering).

Forth, the similarity measures between two clusters as defined by Meila et al.
[15, 16] cover Clustering Error (CE), the Rand index (as a well-known representative
of the point pair counting-based methods), and the Variation of Information (VI) [15].
Additional measures for comparing clusters were also defined: Wallace indices [17],
Fowlkes-Mallows index [18], Jaccard index [19], or Mirkin metric [20]. These later
distance measures are necessary to perform external cluster validation, stability assess‐
ments based on internal cluster validation, meta-clustering, and consensus clustering
[16]. Classic cluster validity measures defined by Stein, Meyer zu Eissen and Wißbrock
[21] include precision, recall, f-measure, Dunn index, Davies-Boulden, Λ and ρ meas‐
ures. These internal measures determine the usefulness of obtained clusters in terms of
structural properties.

From the information theory point of view, CQMs should meet the following primary
axioms set by Kleinberg: (a) scale invariance, (b) consistency, and (c) richness. In addi‐
tion, CQMs should follow the principles of relative point margin, representative set and
relative margin [22]. However, aside from the wide variety of previously mentioned
metrics, SSE (Sum of squared errors) is one of the most frequently used functions when
inferring clusters in k-means algorithms. Minimization of this objective function repre‐
sents the main goal and SSE may be regarded as a baseline quality threshold for most
clustering processes.

From the application development perspective, many educational applications make
intensive use of clustering processes. For example, Bogarín, Romero, Cerezo and
Sánchez-Santillán [23] improve the educational process by clustering, Li and Yoo [24]
perform user modeling via clustering, while Bian [25] clusters educational data to find
meaningful patterns.

3 Method

Our learning analytics pipeline is built into two core components, one centered on data
processing (Clustering and CQM identification) and the other focused on visual
analytics. Data processing is performed at server side based on raw data from the e-
learning platform. Visual analytics are performed in the web client using D3js (https://
d3js.org/), a JavaScript library for manipulating network graphs. Figure 1 presents the
high level workflow of our learning analytics pipeline.
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Fig. 1. Data analytics pipeline.

The input dataset has been obtained from logging activity performed during the
academic year by students interacting with the Tesys e-learning platform [4]. The plat‐
form has specific logging mechanisms for extensively recording raw activity data that
is divided into logging, messaging and quiz answering, indices described in detail in
Sect. 4.

The data processing module creates the data model based on the input educational
traces, the selected algorithm and the associated CQMs, generating in the end specific
clusters and the computed quality metrics. Besides the data model itself, the data
processing module is also responsible for identifying outliers and extreme values in
accordance to the setup and the threshold values enforced by the data analyst.

The visual analytics module displays the generated clusters and marks outliers and
extreme values as described by the data model. Its main goal is to properly present the
model in a visual manner to the data analyst, facilitating the decision making process of
manually removing outliers and extreme values under continuous evaluation of CQMs
and centroid values. From this point forward, the design of our data analysis pipeline
allows continuous trial and error sessions for the data analyst until relevant results from
an educational perspective are obtained. The main characteristic of this module and of
the entire pipeline is that it provides two types of relevant data: numerical information
(by means of CQMs) and visual representations (by spatially generating presentations
of clusters, centroids and outliers/extreme values). This enables the data analyst to
properly decide if the current result is satisfactory or may potentially indicate that addi‐
tional refinements need to be performed for improving the clustering results.

Once the patterns have been identified, the characterization of a new student may be
performed. Assuming that three student clusters have been identified and manually
labeled as “underperforming”, “average” and “well-performing”, new students may be
characterized as belonging to a certain cluster via k-Nearest Neighbors algorithm. The
labeling is performed by the tutor while taking into account the feature names and their
intuitive interpretation. Proper usage of the CQMs in the labeling process is accom‐
plished through the guidance of a data analyst. The overarching goal remains to improve
each student’s predicted knowledge level and to reduce as much as possible the number
of underperforming students. Furthermore, parameters with a high variance need to be
taken into consideration in order to determine the adequate course of action, which
becomes in turn the automatic feedback provided by our system.
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4 Results

The input dataset consisted of 558 students characterized by 17 attributes described in
Table 1. Our initial run of the k-Means clustering algorithm produces the graphs depicted
in Figs. 2 and 3 in terms of SSE, Silhouette, Dunn and Xi-Beni indices, as well as the
centroids presented in Table 2.

Table 1. Initial classification attributes.

Attribute name Description
A. Session parameters
Total Sessions started by the user
W[n] Sessions in the n-th week, where n is takes values from 0 to 6
B. Message parameters
TS Total sent messages
TR Total received messages
AS Average duration between two consecutive sent messages
AR Average duration between two consecutive received messages
WS Words from sent messages
WR Words from received messages
C. Self-assessment parameters
TQ Total answered questions
CQ Correctly answered questions
PQ Percentage of correctly answered questions

SSE va

(a) (b)

lues. Silhouette values. 

Fig. 2. (a) SSE values. (b) Silhouette values.
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 Dunn index values

(a) (b)

. Xi-Beni values.

Fig. 3. (a) Dunn index values. (b) Xi-Beni values.

Table 2. Feature values for centroids.

Total W0 Wl W2 W3 W4 W5 W6
low 27.17 3.66 4.48 4.47 4.10 3.86 3.62 2.98
high 75.21 11.98 12.31 1133 10.59 11.9 9.41 7.69
average 31.33 4.1 4.58 4.84 5.00 5.09 4.10 3.61

TS TR AS AR WS WR TQ CQ PQ
low 22.29 9.92 19.34 319.70 560.73 231.28 151.51 58.42 21.10
high 50.2 6.76 23.93 144.35 1022.76 155.88 1540.35 1042.16 68.40
average 9.99 2.50 5.20 75.86 234.72 78.23 215.76 82.50 32.88

Figure 2a shows an elbow for k equals three clusters. For two clusters, a significant
decrease is observed −45.2 % from the SSE maximum value. While moving forward to
three clusters, there is also an important decrease of 22 % from the previous SSE value.
The subsequent decreases in SSE values are smaller than 10 %, thus leading to the
conclusion that the optimal number of clusters in terms of the steepest descent may be
two or three. Decision among these values is a matter of domain knowledge, but addi‐
tional CQMs provide insight in terms of the optimal selection.

The silhouette values from Fig. 2b are a clear indicator of the quality of generated
clusters. A value between .25 and .5 reflects a week structure, while a value between .5
and .7 highlights a reliable structure. Due to the nature of analysis, we do not expect
strong structures since we are monitoring activities performed by learners. The .3 value
obtained for three clusters is by far the highest score and indicates an appropriate number
of clusters, with a reasonable structure. All other values are close to zero or negative,
meaning that no substantial structure could be identified.

Dunn index values (see Fig. 3a) lays between zero and ∞ and should be maximized
as higher values indicate the presence of compact and well separated clusters. The
obtained index values show that the clusters are not well defined and this is usually due
to the presence of noise in the input dataset. For our particular experiment, this index
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yields to the conclusion that a high percentage of extreme values and outliers are found
in the dataset.

The Xi and Beni index (see Fig. 3b) is significant when a value is a minimum of its
neighbors. Therefore, two and five clusters represent minimum values while disre‐
garding the zero value for one cluster. Still, the index value for three clusters is 4.5 %
higher that the index value for five clusters; thus, from an educational perspective, we
may consider that three clusters are more representative than five.

Based on all previous CQM analyses, we can conclude that the optimal number of
clusters for our analysis is three. Starting from this categorization, Table 2 presents each
centroid’s feature values. After color coding each minimum, maximum and middle
values, we can easily observe that each centroid becomes representative for a corre‐
sponding learner level (“under-performing”, “average” and “well-performing”), high‐
lighting also that the obtained centroids have educational significance.

In addition, a Principal Component Analysis was applied in order to better represent
our data and to reduce the dimensionality of the initial classification attributes. The Total
attribute was eliminated due to multicollinearity to W[0–6], while the AS attribute was
disregarded due to low communality. In the end, 4 principal components were identified
as having corresponding eigenvalues of 1 or greater and accounting for 90.13 % variance.
The identified components represent a refinement of the initial classification, as
messages are now split into in-degree and out-degree while relating to each student’s
activity (Table 3).

Table 3. Rotated component matrix using varimax with Kaiser normalization.

Classification 
attribute

Component
1 2 3 4

1. Logging activity
W[0] .923
W[1] .941
W[2] .943
W[3] .944
W[4] .940
W[5] .916
W[6] .888

2. Testing activity
TQ .967
CQ .967
PQ .872

3. In-degree messaging activity
TR .971
AR .864
WR .942

4. Out-degree messaging activity
TS .975
WS .985
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For visualization purposes, three emerging components – Logging, Testing and
Messaging activities (aggregation of both in-degree and out-degree) – were used to
create dedicated views that facilitate the identification of outliers and extreme values.
Figure 4 presents a print screen from our visual analytics application in which the cent‐
roids are marked with a large circle and the assigned items have similar colors. Three
clusters (orange, green and blue) were annotated as representing “underperforming|”,
“average” and “well-performing” learners. As the coordinate axes represent Testing and
Messaging activities, it becomes obvious that students who were most engaged and
performed best at their tests were clustered into the well-performing group, while the
ones with the lowest participation defined the underperforming cluster.

Fig. 4. Clustering visualization with corresponding CQMs.

Once students have been assigned to a cluster, they may select target students with
better performance from another cluster or from their own cluster and just-in-time
recommendations are offered as a means to improve their activity (e.g., X relevant addi‐
tional messages should be posted, or Y supplementary tests should be taken). Moreover,
the tutor is presented with a list of at-risk students who represent a subset of

Fig. 5. Silhouette values after the removal of extreme values and outliers.
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