
Open Universiteit
www.ou.nl

MASTER'S THESIS

CHARACTERIZING THE RELATION BETWEEN THE MAINTAINABILITY AND
COMMUNITY ASPECTS OF OPEN SOURCE SOFTWARE PROJECTS

Duits, Jean-Pierre

Award date:
2024

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 22. May. 2025

https://research.ou.nl/en/studentTheses/c67fdd97-edcc-4502-93bb-919e0b8ba780

CHARACTERIZING THE RELATION BETWEEN
THE MAINTAINABILITY AND COMMUNITY

ASPECTS OF OPEN SOURCE SOFTWARE
PROJECTS

by

Jean-Pierre Duits

in partial fulfillment of the requirements for the degree of

Master of Science
in Software Engineering

at the Open University, faculty of Management, Science and Technology
Master Software Engineering

to be defended publicly on Thursday May 30th, 2024 at 10:30.

Student number:
Course code: IM9906
Thesis committee: dr. Ebrahim Rahimi (chairman and first supervisor), Open University

dr. Bastiaan Heeren (second supervisor), Open University

CONTENTS

Abstract 1

1 Introduction 2

2 Related work 4
2.1 OSS projects and its social structure . 4
2.2 OSS community state categories (OSS community categories) 5
2.3 Software quality models . 7

2.3.1 Mc Call’s quality model . 7
2.3.2 ISO 9126 quality model . 8
2.3.3 ISO/IEC 25010 quality model . 9
2.3.4 SIG maintainability model . 11

2.4 Code comments . 15

3 Research 18
3.1 Research questions . 18

3.1.1 MRQ: How can software maintainability of OSS community categories
as defined by Yamashita et al. [24] be characterized? 18

3.1.2 SQ1: How can we define or compose a community-based OSS quality
model that meets the current standards? . 18

3.1.3 SQ2: How can we determine maintainability for the selected OSS projects?
19

3.1.4 SQ3: How does software maintainability change when open source soft-
ware projects make transitions between OSS community categories? . . 19

3.1.5 SQ4: How can we propose a predicting model for OSS software main-
tainability? (optional) . 19

3.2 Preparing dataset . 19
3.2.1 Git . 19
3.2.2 GitHub . 20
3.2.3 Pull requests . 20
3.2.4 Selected OSS projects from GitHub . 20
3.2.5 Mining GitHub . 20
3.2.6 Validation. 22

4 Composing a community-based quality model 24
4.1 Community. 24
4.2 Maintainability . 24
4.3 Final maintainability score . 26

5 Determining the maintainability of OSS community categories 28
5.1 Measuring the maintainability of OSS projects . 29

5.1.1 Validation. 30
5.2 Measuring the community aspects of OSS projects 34

5.2.1 Validation. 35

i

5.3 Collected data . 37

6 Software maintainability of OSS community categories 41
6.1 Measuring . 41
6.2 Characterize maintainability of OSS community categories. 42
6.3 The maintainability of OSS community categories after transitions 55

6.3.1 Conclusion - Answering sub question 3. 55
6.4 Conclusion - answering main research question 56
6.5 A model to predict the maintainability for an OSS community category 59

6.5.1 Dataset . 60
6.5.2 Train a linear regression model . 60
6.5.3 Prediction . 60
6.5.4 Validation. 62

7 Discussions 63
7.1 Reflection on the results . 63
7.2 Reflection on the research . 63
7.3 Limitation. 64
7.4 Threats to validity . 65
7.5 Future research . 65

Bibliography i

Appendix A - GitHub projects iv

Appendix B - Database structure vii

ii

ABSTRACT

A significant percentage of today’s software is based on open source software (OSS). This in-
cludes not only small software projects but also large, popular, and widely used OSS projects
such as operating systems (Linux) and web browsers (Firefox, Chromium). Often, OSS projects
have built an evolving community with members around them, including developers, bug
reporters, bug fixers, and various other roles. These members can join the project (mag-
netism) and can be very active or passive (stickiness). Based on these two dimensions of
magnetism and stickiness, the popularity of a project can be determined and be categorized
into the following categories: attractive, stagnant, fluctuating, or terminal. Maintainability
is another important aspect of software, including OSS. It is a crucial component of soft-
ware quality, for which numerous quality models are available. These quality models mea-
sure certain quality characteristics through various metrics. Although the quality as well as
community aspects of OSS projects have been researched by other scholars, the influence
of transitions between these four categories on the maintainability metrics of OSS projects
remained under-explored. This study aims at filling this research gap.
We composed a quality model, adapted from existing models, that measures both quality
(with a focus on maintainability) and the community related metrics of OSS projects. With
this quality model, we attempt to investigate and characterize the possible relationship be-
tween the maintainability of software and changing popularity. For this, we used a custom
created dataset consisting of 90 random Java projects from GitHub. To measure the met-
rics from the quality model we developed a tool to analyze the repositories in the dataset in
multiple periods. Optionally, we tried to determine if it is possible to predict future main-
tainability characteristics based on current popularity and maintainability.
From our results, it appears that the maintainability characteristics of projects usually do not
improve or worsen, even when the popularity of a project changes. Projects often change in
popularity and seem to frequently end up in a stable phase without attracting new develop-
ers.

1

1
INTRODUCTION

Open source software (OSS) is software whose source code is publicly available. This source
code may be modified, improved and distributed. Open source software is widely used for
commercial and personal use. Some examples of well known OSS projects are the Apache
webserver1, the Linux operating system2 and web browsers such as Firefox3 and Chromium.4

An important difference between open source and closed source is the social aspect [13].
OSS projects often consists of a continuously changing community of users, readers, devel-
opers, bug reporters and bug fixers. These community members often do this voluntarily,
causing frequent changes in the community structure.
The sustainable evolution of an OSS project strongly depends on the attraction (magnetism)
for new developers and the extent to which they can be retained (stickiness). In a study by
Yamashita et al., they linked this magnetism and stickiness to a number of categories that
indicate the community state of an OSS project [24; 25]. A community state category can be
attractive, fluctuating, stagnant or terminal.
Some popular platforms for hosting OSS projects are GitHub5 and GitLab6. They offer all
kinds of facilities for an OSS project such as Git version control, hosting, issue trackers and
forums.
An important aspect of software, including OSS, is quality and in particular its maintain-
ability as an important component of software quality which is the focus of this research.
Software quality can be determined based on a number of metrics from a software quality
model. Over the years, many quality models have been proposed, often with a focus on a
specific topic, such as maintainability. The most well-known quality models are ISO 9126
[1] and its successor ISO/IEC 250107.
Much research has been done on the social aspects of OSS projects. For example: Ye and
Kishida researched the motivation of OSS developers [26], Steinmacher et al. did research
about how and why contributions from external developers were not accepted [21] and Tor-
res et al. did an analysis of the core team role in an OSS Community. According to McClean
et al., a gap in current studies is the changes in OSS quality over time and whether the struc-
ture of the team has an effect on its surrounding [13]. With our research, we will try to close

1https://httpd.apache.org/
2https://www.kernel.org/
3https://hg.mozilla.org/mozilla-central/
4https://www.chromium.org
5https://github.com
6https://gitlab.com
7https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

2

https://httpd.apache.org/
https://www.kernel.org/
https://hg.mozilla.org/mozilla-central/
https://www.chromium.org
https://github.com
https://gitlab.com
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

this gap and gain insight whether the OSS quality of software depends on the structure of
the OSS community, and what happens when this structure changes. To achieve this, we
will answer the following main research question:

How can software maintainability of OSS community categories as defined by Yamashita et al.
[24] be characterized?

For our research we will use the OSS community state categories (OSS community cate-
gories) of Yamashita et al. to classify the state of an OSS community [24; 25]. We will develop
a tool that automatically measures these categories for selected OSS repositories in specific
periods. Because Yamashita et al. do not measure the maintainability metrics of the soft-
ware, we will do this during our research.
We will also build a prediction tool to predict the future maintainability, based on the current
OSS state category and maintainability characteristics.
Therefore we will propose a software maintainability model, mainly based on existing mod-
els, with a focus on OSS by incorporating metrics that can represent the community and
social aspects.
We did a literature study to compare existing quality models. An important aspect of the
quality models should be that the metrics can be measured automatically.
Our research uses data from GitHub stored in a custom created dataset. To the best of our
knowledge, no research has been done on the popularity of OSS communities and its in-
fluence on software quality. Our composite quality model and developed prediction model
could be used by OSS communities in the future, and try to guarantee the quality.

The rest of the document is structured as follows: Chapter 2 describes all relevant studies
and tools that are already available and that could possibly be used for our research. Topics
such as OSS community structures (section 2.1), OSS population categories (section 2.2),
software quality models (section 2.3) and code comments (section 2.4) are discussed here.
The research methodology, including our formulated research questions (section 3.1), is dis-
cussed in chapter 3. In chapter 4 we compose our quality model and in chapter 5 we create
a tool that uses this quality model for measuring our selected repositories and dataset. A
characterization of maintainability in relation to OSS community categories is described in
chapter 6, while chapter 6.5 describes a prediction tool for maintainability. Chapter 7 dis-
cusses the limitations and future work of our research.

3

2
RELATED WORK

Open source communities and software quality models are common research topics. As a
result, a lot of information is already available for our research. In this section we describe
the information that may be relevant to our research. In section 2.1 we summarize how
an OSS community and the associated social structure is composed. To classify the status
of an OSS project we can use OSS population state categories, we discuss this in section 2.2.
Quality models that can be used to determine the quality of software are discussed in section
2.3.

2.1. OSS PROJECTS AND ITS SOCIAL STRUCTURE
In closed source software projects, developers and users are clearly defined and strictly sep-
arated. In open source software (OSS) there is no clear distinction between developers and
users. All users are potential developers [26]. People involved in an OSS project create a
community around the project bounded by their interest in using and developing the sys-
tem. Members of an OSS community take on a role based on their own interests. Nakakoji
et al. defined eight roles of OSS community members [15]. These roles are listed in table 2.1.

An OSS community has not a strict hierarchy, but it is neither flat. The influences that mem-
bers have on the system and the community are different, depending on their role. Figure
2.1 shows how closer to the center, the larger the radius of influence [15].
Each OSS community has a unique structure depending on the nature of the system and its
member population [26]. The roles and their associated influences in OSS communities can
be realized only through contributions to the community. Roles are not fixed. Members can
play larger roles if they aspire and make appropriate contributions [26]. As members change
the roles they play, they also change the social dynamics and thus reshape the structure of
the community, resulting in an evolution of the community itself.
Open source projects are usually initiated by a single developer, such as Linus Torvalds for
the Linux project, by a core team of developers, such as the development of the Python pro-
gramming language [13]. Developers can view the source code and contribute to it. While
contributing to open source software, a lot of data is created about how developers work
and interact together in a community [13]. A Social Network Analysis (SNA) can provide an
overview of how the network of an OSS community is structured [13]. A necessary dataset
for SNA is a set of connections between people. To obtain this data, a commit history can
be analyzed. If people work on the same project at the same time, they might be said to be

4

Role Description
Passive User Users that just use the system, in general most members

of a community are passive users [26].
Reader Active users of the system, they not only use the system,

but also try to understand how the system works by read-
ing the source code.

Bug Reporter Discovers en reports bugs.
Bug Fixer Fix bugs, have to read and understand a small portion of

the source code.
Peripheral Developer Contribute occasionally (irregular) new functionality or

features to the system.
Active Developer Contribute regular new functionality, features or bug

fixes.
Core Member Responsible for guiding and coordinating the develop-

ment of the project. Have been involved with the project
for a relative long time and have made significant contri-
butions to the development and evolution of the system.

Project Leader Often the person who has initiated the project. Responsi-
ble for the vision and overall direction of the project.

Table 2.1: Roles of open source community members [15]

working together. If people comment on the same issue, there is also a link. Modern OSS de-
velopment sites (such as GitHub) have additional social network features such as following
or liking, which can be used by a SNA [13].

2.2. OSS COMMUNITY STATE CATEGORIES (OSS COMMUNITY CAT-
EGORIES)

Onoue et al. have investigated what the population state of an open source community is
[17]. To become and remain a successful open source project, it is important to attract new
developers and keep these developers making contributions. A project is magnet when it
attract a large proportion of new developers and sticky when it retains a large proportion of
active developers [24]. We consider a developer as someone who writes or modifies code for
a project. Yamashita et al. have studied the typical values of sticky- and magnet open source
projects and analyzed how these values change over time. For the analysis they used the
GitHub dataset of Gousios 1 [9]. This dataset contains a lot of code authorship data, such as
commit and pull requests activities, about Github repositories and their evolution in time.
Yamashita et al. defined four categories, based on the data of 90 open source projects, to
classify OSS community categories. These categories are listed in table 2.2.

To calculate which OSS community category a project belongs to, at a given moment, there
are two metrics. The magnet metric determines the number of new developers who have
contributed to the project during a selected period. The sticky metric calculates which de-
velopers contributed previous period and current period. Sticky values considers only the
number of contributors of previous period. These metrics are adopted from Yamashita et al.

1https://ghtorrent.org/

5

https://ghtorrent.org/

Figure 2.1: Structure of an OSS community [15]

Fluctuating
Projects that successfully attracts new
developers, but fail to retain them. High
magnet, low sticky.

Attractive
Projects that successfully attracts new
developers and retain the existing ones.
High sticky and high magnet.

Terminal
Projects that struggle to attract new de-
velopers and fail to retain them. Low
magnet, low sticky.

Stagnant
Projects that struggle to attract new de-
velopers, but successfully retain them.
Low magnet, high sticky.

6

M
ag

n
et

is
m

-Stickiness

Table 2.2: OSS community categories [24]

and adapted to the following formulas with Pi−1 as period i:

Magnet value = New developers in Pi

Total developers

Sticky value = Developers period Pi , with contributions in Pi−1

Developers period Pi−1

The thresholds of the OSS community categories in table 2.2 are defined using the median
of the sticky and magnet values [24; 25].
The examples in figure 2.2 show that during period Pi project 1 has 1 new developer (C)
out of 3 total (A, B and C). Therefore the magnet value is: 1/3. In period Pi−1 there were 2
contributing developers (A and B), of which 1 developer in Pi also made a contribution (A).
Therefore the sticky value is: 1/2. For project 2 there are a total of 3 contributors (D, E and
F) in period Pi , 2 of which are new (E and F). The magnet value is: 2/3. In Pi−1 there is 1
contributor (D) that also contributes in Pi , so the sticky value is 1/1.

6

Figure 2.2: Calculation examples of sticky and magnet metrics [25].

2.3. SOFTWARE QUALITY MODELS
Over the past decades, many different quality models have been proposed to determine
the quality of software systems. Quality models consist of a number of metrics with which
the quality of software systems can be determined. The first quality model was described
in 1977 by McCall et al. [12], but many models have been proposed over the years [5; 6].
Finally, software quality standards have been described by the International Organization
for Standardization (ISO)2.

2.3.1. MC CALL’S QUALITY MODEL
One of the best-known quality model is the model of McCall et al. [5]. This model originates
from the US military, and it defines and identifies 3 major perspectives and 11 factors of the
quality associated with 23 criteria of a software product [6; 12] (see figure 2.3). The 3 major
perspectives are listed in table 2.3 [5].

Perspective Description
Product revision The ability of the product to apply changes. How com-

plicated is it to fix bugs (maintainability), make necessary
changes (flexibility) or test the system for errors and its
specifications (testability).

Product operations The functioning of the software product: does the soft-
ware meet the specifications (correctness) and has it the
ability not to fail (reliability). How efficiently does the
software use the resources (efficiency), is it protected
against unauthorized access (integrity) and how easy is
the use of the software (usability).

Product transition The adaptability of the product to new environments.
Moving the software to another environment (portabil-
ity), the ease of using the software in an other context
(reuse-ability) and the effort to couple the system to an-
other system (interoperability).

Table 2.3: Major perspectives of Mc Call’s quality model [5]

2https://www.iso.org

7

https://www.iso.org

Figure 2.3: Mc Call’s quality model [6]

2.3.2. ISO 9126 QUALITY MODEL

In 1991 a number of quality features, mainly derived from Mc Call’s model, were published
as the standard quality model [1] by the International Standards Organization (ISO) and
named as ISO 9126 software quality model. The ISO 9126 model distinguishes three layers:
internal quality (code quality without executing), external quality (during execution) and
quality in use (user experience). Six main characteristics and 27 sub-characteristics are de-
scribed [1; 10] (see figure 2.4). From 2001 to 2004, the ISO published an expanded version of
the ISO 9126 quality model. This expanded version contains technical reports describing 16
metrics for external quality and 9 for internal quality [2–4]. The 6 main characteristics of the
ISO 9126 quality model are listed in table 2.4.

8

Figure 2.4: The main characteristics with the sub characteristics of the ISO 9126 quality model [1; 6]

2.3.3. ISO/IEC 25010 QUALITY MODEL

From 2011 there is a successor to the ISO 9126 model, the ISO/IEC 25010 model. It is part of
ISO/IEC 25000 series, which is also called the SQuaRE model (System and Software Quality
Requirements and Evaluation). The ISO/IEC 25010 extends ISO 9126. The ISO/IEC 25010
describes 8 main characteristics and 31 sub-characteristics (see figure 2.5)3. The main dif-
ferences between the ISO 9126 quality model and ISO/IEC 25010 quality model are the in-
troduction of 2 new main characteristics: security and compatibility. The 8 main character-
istics of the ISO/IEC 25010 quality model are listed in table 2.4.

Figure 2.5: The main characteristics with the sub characteristics of the ISO/IEC 25010 quality model [1; 6]

3https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
4https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en:sec:4.2.1

9

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en:sec:4.2.1

Characteristics ISO model(s) Description
Functional suitability ISO 9126

ISO/IEC 25010
Degree to which the software product or sys-
tem provides functions that meet stated and
implied needs when used under specified
conditions.

Performance efficiency ISO 9126
ISO/IEC 25010

Performance relative to the amount of re-
sources used under stated conditions.

Usability ISO 9126
ISO/IEC 25010

Degree to which a product or system can be
used by specified users to achieve goals with
effectiveness, efficiency, and satisfaction in a
specified context of use.

Compatibility ISO/IEC 25010 Degree to which a product, system or com-
ponent can exchange information with other
products, systems or components, and/or
perform its required functions, while shar-
ing the same hardware and software environ-
ment.

Reliability ISO 9126
ISO/IEC 25010

Degree to which a system, product or com-
ponent performs specified functions under
specified conditions for a specified period of
time.

Maintainability ISO 9126
ISO/IEC 25010

Degree of effectiveness and efficiency with
which a product or system can be modified by
the intended maintainers.

Security ISO/IEC 25010 Degree to which a product or system protects
information and data so that persons or other
products or systems have the degree of data
access appropriate to their types and levels of
authorization.

Portability ISO 9126
ISO/IEC 25010

Degree of effectiveness and efficiency with
which a system, product or component can
be transferred from one hardware, software or
other operational or usage environment to an-
other.

Table 2.4: Main characteristics of the ISO 9126 [1] and ISO/IEC 25010 quality models 4

10

Limitation Description
Analyzability How easy or difficult is it to diagnose the system for defi-

ciencies or to identify the parts that need to be modified?
Changeability How easy or difficult is it to make adaptations to the sys-

tem?
Stability How easy or difficult is it to keep the system in a consis-

tent state during modification?
Testability How easy or difficult is it to test the system after modifi-

cation?
Maintainability compliance How easy or difficult is it for the system to comply with

standards or conventions regarding maintainability?

Table 2.5: Maintainability characteristics of ISO 9126, adopted by the SIG maintainability model [10]

2.3.4. SIG MAINTAINABILITY MODEL
Many different models have been proposed over the years, often based on one of the ISO
models. A well-known alternative model is the Software Improvement Group (SIG)5 model,
developed by Heitlager et al. [10]. This model is based on the ISO 9126 model and focuses
on the maintainability characteristics. These characteristic are subdivided into five sub-
characteristics, as listed in table 2.5.
The ISO 9126 model does not directly measure maintainability through source code or docu-
mentation, but rather indirectly through the activities of technical staff [10]. For this reason,
alternative metrics, such as the maintainability index and the SIG maintainability model
have been developed. The maintainability index (MI) was proposed by Coleman et al. and
Oman and Hagemeister to objectively determine the maintainability of a software system
based on the status of the corresponding source code [8; 10; 16]. The MI is a composite
number on several metrics: The Halstead volume metric (HV), cyclomatic complexity (CC),
the average number of lines of code per module (LOC) and the the percent of comment lines
per module (COM). The higher the MI, the better the maintainability of the system. Calcu-
lating the MI is possible with the following formula:

171−5.2l n(HV)−0.23CC −16.2ln(LOC)+50.0si n
p

2.46∗COM

However, Heitlager et al. argue that, based on their years of consultancy experience, there
are a number of limitations to the MI and they believe it is not clear what steps should be
taken to increase the MI [10]. The limitations they mention are the average complexity, the
Halstead volume metric, comments, formula understandability and control [10]. These lim-
itations are summarized in table 2.6.
Heitlager et al. have proposed an alternative maintainability model based on these limita-
tions, the SIG maintainability model. It consists of a set of source-code measures that are
ranked with: ++ / + / o / − / −−, and mapped to the maintainability sub-characteristics
[10]. The characteristics that are described are volume, complexity per unit, duplication,
unit size, and unit testing. They will be described in the following paragraphs. A source code
unit is the smallest piece of code that can be executed, such as methods and procedures.

VOLUME

A larger the system requires a larger effort to maintain. Lines of code (loc): All lines of the
source code that are not comments or blank lines. Volume can be ranked using the values

5https://www.softwareimprovementgroup.com/

11

https://www.softwareimprovementgroup.com/

Limitation Description
Root-cause analysis Since the MI is a composite number, it is very difficult to

determine what causes a particular value for the MI.
Average complexity Using the average cyclomatic complexity (CC) metric for

composing the MI tends to mask the presence of risky
parts.

Computability The Halstead Volume metric (HV) is not widely accepted
within the software engineering community and is diffi-
cult to compute.

Comments More often comments are code that has been commented
out or natural language referring to earlier version of the
code. Sometimes it describes a complex piece of code that
is difficult to maintain. Therfore counting comments has
no relation to maintainability.

Understandability It is unclear what the constants and variables from the MI
formula are based on.

Control It is unclear to both developers and management what
needs to be done to improve the MI.

Table 2.6: Limitations of the MI according to Heitlager et al. [10]

from table 2.7. A project with fewer than 66 kloc of code will be ranked as ++, a project with
more than 1310 kloc will be ranked as −−.

Rank Kloc

++ 0-66
+ 66-246
o 246-665
− 665-1310
−− > 1310

Table 2.7: Ranking of kloc [10]

COMPLEXITY PER UNIT

In 1976 McCabe introduces the concept of Cyclomatic Complexity (CC), which is a measure
of software code complexity [11]. This metric is designed to help software developers to
analyze the complexity of a program’s control flow. CC measures the number of linearly
independent paths and is calculated by analyzing the control flow graph of a program. It
takes into account the number of decision points (such as if statements, loops, and case
statements) in the code. The higher the CC value, the more complex the code is. Complex
code indicates a potentially greater risk for bugs. The formula for CC is given below, where
v(G) is the cyclomatic complexity of the graph G , e is the number of edges and n is the
number of vertices.

v(G) = e −n +2

Pressman described an example for calculating the CC [18]. In the source code example in
Figure 2.6, each node in the graph of Figure 2.7 is referenced. The CC can be calculated with

v(G) = 17−13+2 = 6

12

Figure 2.6: Source code with nodes identified [18] Figure 2.7: Flow graph for Figure 2.6 [18]

Complex units are difficult to understand (analyzabilty) and difficult to test (testability). The
SIG maintainability model adopted this metric and calculates for each unit the CC and cat-
egorize them by risk as listed in table 2.8.

CC Risk Evaluation

1−10 Simple, without much risk
11−20 More complex, moderate risk
21−50 Complex, high risk
> 50 Very complex, very high risk

Table 2.8: Risk evaluation of CC per unit [10]

The ranking can be determined based on the collected risks of complexity. This ranking can
be determined using the listing in table 2.9. It is important that all percentages meet the
thresholds for the respective ranking. When the CC is moderate in maximum 21% of the
source code units, and there are no high or very high units, the ranking is ++.

Maximum Relative loc
Rank Moderate High Very High

++ 21% 0% 0%
+ 30% 5% 0%
o 40% 10% 0%
− 50% 15% 5%
−− - - -

Table 2.9: Ranking of CC per unit [10]

DUPLICATION

Duplication of source code fragments (code clones). Excessive duplication makes a system
larger than it needs to be. Duplicated blocks over 6 lines, ignoring leading spaces, are cal-
culated as code duplication. A well designed system should not have a percentage of more

13

than 5% code duplication. Based on the percentage of duplicates, a ranking can be assigned,
as shown in table 2.10.

Rank Duplication

++ 0-3%
+ 3-5%
o 5-10%
− 10-20%
−− 20-100%

Table 2.10: Ranking duplication [10]

UNIT SIZE

The size of an source code unit does say something about the maintainability. Larger units
are more difficult to maintain (lower analysability and testability). Unit size uses a simple
loc metric. Methods with fewer than 30 lines of code have a low risk. If a method has more
than 74 lines of code, it has a very high risk. Refer to table 2.11 for a comprehensive list of
risk evaluations for unit sizes.

Unit Size (loc) Risk Evaluation

0−30 Low risk
30−44 Moderate risk
44−74 High risk
> 74 Very high risk

Table 2.11: Risk evaluation of unit size [10]

The ranking can be determined by the percentages of risks as listed in table 2.12. It is im-
portant that all percentages meet the thresholds for the respective ranking. When 19.5% or
lower of the code has a moderate risk, less than 11% has a high risk, and less than 4% has a
very high risk, then the unit size is ranked as ++.

Maximum Relative Unit size
Rank Moderate High Very High

++ 19.5% 10.9% 3.9%
+ 26% 15.5% 6.5%
o 34.1% 22.2% 11%
− 45.9% 31.4% 18.1%
−− - - -

Table 2.12: Ranking unit size [10]

UNIT TESTING

Good sets of unit tests have a significant positive impact on maintainability. Unit test cover-
age can be measured with dedicated tools. The test coverage can be ranked as listed in table
2.13.

14

Rank Unit Test Coverage

++ 95-100%
+ 80-95%
o 60-80%
− 20-60%
−− 0-20%

Table 2.13: Ranking of unit tests [10]

MAPPING BACK TO SYSTEM LEVEL

The obtained rankings of the described metrics can be mapped back to the maintainability
characteristics of the ISO 9126 model. The rows in table 4.3 represent the 4 characteristics
of the ISO 9126 model, while the columns represent the source code properties of the SIG
maintainability model. To calculate a system-level value, the average is computed from the
relevant properties for this system-level score. The relevant properties are indicated with a
cross. In table 2.15, an example of a mapping of obtained rankings to a system level score is
provided.

Vo
lu

m
e

C
yc

lo
m

at
ic

co
m

p
le

xi
ty

D
u

p
li

ca
ti

o
n

U
n

it
si

ze

U
n

it
te

st
in

g

Analysability x x x x
Changeability x x
Stability x
Testability x x x

Table 2.14: Mapping back to maintainability characteristics of the ISO 9126 model [10]

2.4. CODE COMMENTS
Comments in source code can be used to explain the programmer’s intent or to summarize
the code [14]. Misra et al. investigated the co-relation between quality of code comments
and issues. For this study, they created a machine learning model that can categorize code
comments into two different categories: relevant comments and auxiliary comments. Rele-
vant comments are considered useful, while auxiliary comments do not add value for devel-
opers. Comments consist of various types. Steidl et al. defined these types [20]. Misra et al.
completed the list with ’API or IDE comments’ [14]. Relevant comments include the types
as listed below:

• Header comments Describes the functionality of a class. Header comments are lo-
cated before the class declaration.

• Member comments Information about the method or field. Located before or in the
same line of the definition.

15

Vo
lu

m
e

C
yc

lo
m

at
ic

co
m

p
le

xi
ty

D
u

p
li

ca
ti

o
n

U
n

it
si

ze

U
n

it
te

st
in

g

Sc
o

re

Obtained ranking ++ – - - o

Analysability x x x x o
Changeability x x -
Stability x o
Testability x x x -

Table 2.15: Mapping example

• Inline comments Implementation decisions within a method.

• Section comments Groups multiple methods or fields together. For example:
// –– Getter and Setter Methods –-

• Task comments Notes or remarks of the developer. For example a TODO note or an
implementation explanation.

• Code comments Commented out code, so it is ignored by the compiler.

• API or IDE comments Comments that contain all API calls and IDE directives.

For auxiliary comments, the following types are described:

• Copyright comments Information about the license and the copyright of the source
code. Mostly placed on the top of the file.

• Noisy comments Comments without contributing valuable information.

Misra et al. extracted the comments and issue metadata, such as opening and closing times,
from 625 Python repositories on GitHub. With this collected meta data, they calculated the
average duration time for resolving an issue. The code comments of the repositories were
classified into relevant comments or auxiliary comments using a trained machine learning
model (Random Forest model). With all this data, Misra et al. investigated how the aver-
age time for resolving an issue varies with the number of relevant comments. They have
categorized the results into four categories, as listed in table 2.16.

Relevant comments Average time taken to solve an issue
1 Low percentage More time
2 Low percentage Less time
3 High percentage More time
4 High percentage Less time

Table 2.16: Repository density categories [14]

The graph in Figure 2.8 is divided into the 4 described categories from table 2.16. The cat-
egories are separated by the mean. For the x-axis representing the percentage of relevant

16

comments, it is 0.88 (88%). For the y-axis representing the mean number of days to resolve
an issue, it is 97 (days). The largest number of repositories in Figure 2.8 is in category 4. Ac-
cording to Misra et al. is that the evidence that source code with more relevant comments
resolves issues faster. The result indicates that when the percentage of relevant comments
in a repository is higher than 88%, the average time to resolve an issue is less than 100 days
in 65% of cases [14].

Figure 2.8: Percentage of relevant comments vs average time to solve an issue [14]

17

3
RESEARCH

In our research we want to investigate the possible relationship between the OSS commu-
nity categories of Yamashita et al.: attractive, fluctuating, stagnant and terminal [24] (section
2.2) and their maintainability metrics (section 2.3.4).

3.1. RESEARCH QUESTIONS

For our research we define a number of research questions. These consist of a main question
followed by 4 sub-questions.

3.1.1. MRQ: HOW CAN SOFTWARE MAINTAINABILITY OF OSS COMMUNITY CAT-
EGORIES AS DEFINED BY YAMASHITA ET AL. [24] BE CHARACTERIZED?

We aim to understand the popularity of a repository by examining OSS community cate-
gories and assessing their impact on the maintainability. We do this by measuring 8 different
periods for 90 repositories in our dataset, using our quality model from sub question 1 (sec-
tion 4). With these measurements, we can analyze and characterize if there is a correlation
between maintainability and an OSS community category.

3.1.2. SQ1: HOW CAN WE DEFINE OR COMPOSE A COMMUNITY-BASED OSS
QUALITY MODEL THAT MEETS THE CURRENT STANDARDS?

To assess the quality of OSS, a quality model must be defined. We can use this model
throughout the research. We have to do a literature study about existing quality models.
This study allows us to assess the advantages and disadvantages of already existing models.
An important aspect of the quality model should be that you can measure without, or with
minimal, human interaction. This means that the measurements of the software projects
can be fully automated. Another important parts are the properties to be measured. Due
to time constraints, our research will focus on the maintainability part of the software. The
maintainability part is mainly based on the source code of the software and therefore rel-
atively easy to measure automatically. Properties of the OS community are also important
and are therefore also included in the measurements. Many of these properties can be fil-
tered out of our dataset (section 3.2). In chapter 4, the entire quality model is described in
detail.

18

3.1.3. SQ2: HOW CAN WE DETERMINE MAINTAINABILITY FOR THE SELECTED

OSS PROJECTS?
To measure the quality based on our defined model from SQ1, we develop a command line
(CLI) tool. This tool should measure a selected project from our dataset within a specific
period. The tool should measure both the community and maintainability aspects. To mea-
sure the community aspects, we will need to use the GitHub metadata from the dataset.
For maintainability, the selected repository will also be checked out using Git to analyze and
measure the source code. The tool returns all measured results in a processable format, such
as CSV or JSON. Refer to chapter 5 for the detailed explanation of this research question.

3.1.4. SQ3: HOW DOES SOFTWARE MAINTAINABILITY CHANGE WHEN OPEN

SOURCE SOFTWARE PROJECTS MAKE TRANSITIONS BETWEEN OSS COM-
MUNITY CATEGORIES?

In our dataset, there are various periods that we can measure. Between these periods, the
popularity can increase or decrease, causing the OSS community category to change. We
are investigating whether we see a relationship between a transition of OSS community cat-
egories and the maintainability of a repository.

3.1.5. SQ4: HOW CAN WE PROPOSE A PREDICTING MODEL FOR OSS SOFT-
WARE MAINTAINABILITY? (OPTIONAL)

For this optional research question, we attempt to predict, with the help of machine learn-
ing, what the maintainability will be when a repository makes a transition to a different OSS
community category. We develop a small tool where you can specify an OSS community
category including the current maintainability rankings, and this tool returns the 4 possible
transitions with the predicted new maintainability rankings.

3.2. PREPARING DATASET
During the research we use a custom created dataset. This dataset should be as varied as
possible, and should therefore include popular and less popular Java projects from GitHub.
We do not use the well known GHTorrent dataset of Gousios [9]. This dataset is outdated and
is no longer maintained. The related website is offline and the last public GHTorrent dataset
dates from 2019. Attempts to get the outdated software running (written in Ruby) have been
unsuccessful. We decided to build our own tool that retrieves and stores all metadata from
the GitHub API for selected projects in a database.

3.2.1. GIT

Git 1 is a version control system for software systems, created by Linus Torvalds, the founder
of Linux. Git makes it possible to track all changes in the source code during development.
It enables developers to simultaneously work on different features in separate branches of
a repository and merge these changes into a target branch. Changes in a branch that are
saved in Git are called commits. Git ensures that developers can collaborate effectively. A
developer works locally with a Git client to push and pull changes to or from a Git server.
While there are alternative systems like Subversion (SVN) 2, is Git currently the most widely

1https://git-scm.com/
2https://subversion.apache.org/

19

https://git-scm.com/
https://subversion.apache.org/

used version control system.

3.2.2. GITHUB

GitHub 3 is a platform based on Git to host repositories. Within this platform, various ad-
ditional options have been added, such as issues, pull requests and wikis. Other notable
platforms are GitLab 4 and SourceForge 5, but GitHub is currently the most popular for OSS
communities.

3.2.3. PULL REQUESTS
GitHub users can clone existing OSS repositories, create a new branch, make changes to the
code and submit a pull request to propose their changes to merge with the main/master
repository. The project maintainers will review the changes and, if deemed valuable, merge
them into the original master/main code base. GitHub offers three different ways to merge
a pull request, the maintainer chooses which method to use. See table 3.1 for the GitHub
merge methods.

Merge Method Description
Merge commit Creates a new commit to combine changes from the source

branch into the target branch.
Squash and merge Combines all the changes into a single, new commit before

merging into the target branch.
Rebase and merge Transfers the changes from the source branch to the target

branch by replaying each commit. This results in a linear Git
history.

Table 3.1: GitHub pull request merge methods

3.2.4. SELECTED OSS PROJECTS FROM GITHUB
Github top lists contain a large number of popular tutorials and examples. So using this lists
should not give a good representation of OSS projects. We choose to compose the project list
ourselves via the public REST API of GitHub 6. By calling the API with specific parameters we
get a filtered list of public GitHub repositories. We have filtered the repositories to be 50MB
or less in size and exist from at least 2020 with a Git push in the last year. To get a varied
dataset we requested a list of repositories 3 times. Popular projects with more than 9000
stars, less popular projects with 1001..3000 stars, and low projects with less than 1000 stars.
We have hand-filtered these lists by language (readable, no Chinese), no manuals, and the
programming language in the repository is at least 90% Java. As a result, we have a diverse
list of Java repositories, see appendix 7.5 for a complete list of the selected repositories.

3.2.5. MINING GITHUB
Now we have a list of selected repositories, we can start mining them from GitHub and stor-
ing the data in the MySQL database. We have built a command line tool (CLI) for this using
Laravel Zero, a PHP framework for building CLI apps. By using various endpoints of the

3https://www.github.com
4https://www.gitlab.com
5https://sourceforge.net/
6https://docs.github.com/en/rest

20

https://www.github.com
https://www.gitlab.com
https://sourceforge.net/
https://docs.github.com/en/rest

GitHub API, we can gather a lot of data about the repositories. If a rate limit is reached (5000
requests a hour), the tool waits until the time limit is exceeded. The tool also ensures that
data is not redundant, for example by storing the same user only once. Running the tool can
take many hours. The retrieved data is described below.

Users All GitHub parts can be linked to users. When a linked user does not yet exist in
the database, it is created. The most relevant data stored for a user: GitHub ID, login
name, full name and email address.

Repository Includes the GitHub ID, the repository name, the owner user, the default branch,
whether it is a fork, and the date when the repository was created/modified/pushed.

Commits All the metadata of Git commits linked to the repository default branch or to a
fork of a pull request. The most relevant metadata of these commits that is stored
includes: SHA hash, author, committer, commit message, commit date and parent
commit.

Stargazers A repository can have a number of stargazers (stars), which are a kind of likes on
GitHub from users. The most relevant data for stargazers includes: starred at date and
linked user.

Issues Issues are a specific component of GitHub. An issue is linked to a user, has a state
(open or closed), create date, close date, title, body, comments, and labels. These
linked labels, such as bug or question, are also stored in the database. This allows, for
example, the determination of the number of bugs or feature requests for a specific
period.

Forks Forks are repositories that are cloned from the original repository. These can be used,
for example, to make modifications and create a pull request. Relevant data stored
about forks includes GitHub ID, owner, name, parent repository and creation date.

Pull requests Requests from developers to merge changes into the original code base. Rele-
vant data for pull requests includes GitHub ID, number, state (merged), user, creation
date, close date, merge date, merge commit SHA, head user, head repository, head
SHA, base user, base repository, and base SHA.

See Appendix B for the complete database structure including all stored fields. After fetching
all the data from our selected repositories (section 3.2.4), The amount of data, as shown in
table 3.2, is available.

Data Count
Commits 272k
Forks 166k
Issues 124k
Labels 1.2k
Pull Requests 49k
Repositories 9k
Stargazers 648k
Users 414k

Table 3.2: Record count dataset

21

3.2.6. VALIDATION
The tool we have developed retrieved metadata for the selected repositories (section 3.2.4)
from GitHub (section 3.2.2) via the public GitHub Rest API7 and stored it in a database. To
ensure the accuracy of this data, we randomly select projects and manually compare them
for validation. This manual comparison can involve analyzing the repository on the GitHub
webpage8 or manually requesting the GitHub Rest API using tools such as Postman 9. As
the data was collected some time ago, we should consider that the data may have under-
gone some changes. For example, forks may have been removed, and stars could have been
unstarred during the period between data retrieval and validation.
Per repository, we collect a range of metadata, such as details about forks, issues, commits,
pull requests, and stargazers. Not all of this data is currently used but may be useful for
future research.

Forks For the repository "exchange-core" 10, the GitHub API returns 705 forks, out of which
46 are from a date after our data import. Therefore, our dataset should have 659 forks.
However, it currently shows 666 forks. After a manual comparison, it was discovered
that 7 forks had been removed after the data import. This indicates that the data in
our database is accurate.

Issues The database has recorded 136 issues for the "exchange-core" repository. The GitHub
API returns 138 issues, of which 2 have a date after the data import. This confirms that
the data in the database is accurate.

Commits A call to the GitHub API returns 293 commits for the "exchange-core" project.
The database contains 290 commits. The three commits that do not match have the
message: "This commit does not belong to any branch on this repository and may
belong to a fork outside of the repository." We consider the data in the database as
valid.

Pull requests Our database contains 43 pull request records for the "exchange-core" repos-
itory, and the GitHub API also returns 43 pull requests. We have compared the IDs,
and they match. The pull requests are thus valid. Each pull request is associated with
commits, and we are comparing the commits of 5 random pull requests via the GitHub
repository page 11. Commits always have an ‘author_id‘ and a ‘committer_id‘, so the
user must exist in the database.

Pull request no. Commits on GitHub Commits DB Matching commits SHA
102 4 4 Yes
134 4 4 Yes
92 1 1 Yes
29 22 22 Yes
2 3 3 Yes

Table 3.3: Random pull request commits comparison for the exchange-core repository

7https://docs.github.com/en/rest
8https://www.github.com
9https://www.postman.com/
10https://github.com/exchange-core/exchange-core
11https://github.com/exchange-core/exchange-core/

22

https://docs.github.com/en/rest
https://www.github.com
https://www.postman.com/
https://github.com/exchange-core/exchange-core
https://github.com/exchange-core/exchange-core/

Stargazers The number of stargazers in the database for the "exchange-core" repository is
1628. However, the GitHub API returns 1612 stargazers for the same period, resulting
in a difference of 16 stargazers. Because the missing stargazers are also not present in
the API response, it is likely due to users un-starring the repository.

23

4
COMPOSING A COMMUNITY-BASED QUALITY

MODEL

In this chapter, we address sub question 1: How can we define or compose a community-
based OSS quality model that meets the current standards?. We answer this question by com-
posing a quality model that we can use to answer the remaining research questions.

This model includes community and maintainability aspects. Throughout the research, we
examine the relationship between the community and maintainability aspects. Our quality
model is composed of various existing quality models. For the maintainability part, we have
added a custom metric.s

4.1. COMMUNITY
Fundamental elements of an OSS community included popularity, commitment and con-
tribution frequency. To measure this, we use the sticky and magnet metrics proposed by
Yamashita et al. [24] (section 2.2), applying the following formulas:

Sticky value = Developers period Pi , with contributions in Pi−1

Developers period Pi−1

Magnet value = New developers in Pi

Total developers

Based on the stickiness and magnetism values, we can determine an OSS community state
category. We refer to this category in our model as the OSS community category. The thresh-
old to determine whether a value is high or low is the median of all sticky or magnet mea-
surements. By using these thresholds, the OSS community category in which the project
falls can be determined by using table 2.2.

4.2. MAINTAINABILITY
To assess the maintainability of an OSS repository, we use the SIG maintainability model of
Heitlager et al. [10] as a foundation, (section 2.3.4). We extended this model and introduce

24

an additional software property related to comments in the source code. The original main-
tainability index (MI) of Coleman et al. [7], for which the SIG maintainability model is an
alternative, has an optional feature to include the percentage of comments in the calcula-
tions. We reintroduce this aspect to our custom model. Our extended SIG maintainability
model consists of the following metrics:

Volume This metric, assigns a ranking based on the lines of code, excluding comments and
blank lines. The ranking is determined based on table 2.7 (section 2.3.4).

Complexity per unit For each unit (method) the cyclomatic complexity will be calculated
and assigned to a risk as listed in table 2.8. Then, a ranking will be assigned based on
the percentage of relative lines of code per risk. These rankings are listed in table 2.9
(section 2.3.4).

Duplication Duplicated blocks exceeding 6 lines, excluding leading spaces, are identified
as code duplication. By determining the percentage of duplicates relative to the total
lines of code, we can assign a ranking based on table 2.10 (section 2.3.4).

Unit size Based on the number of lines for each unit, a risk is assigned as listed in table 2.11.
Then, a ranking will be assigned based on the percentage of relative lines of code per
risk. These rankings are listed in table 2.12 (section 2.3.4).

Unit testing The SIG maintainability model has a metric to rank test coverage, as listed in
table 2.13. Since it involves a procedure where the software must be built and various
manual adjustments need to be made, it is error-prone for a large number of reposi-
tories, as in our research. Therefore, this metric is not included in our model. When
determining the maintainability characteristics, this metric is replaced with the com-
ments metric below.

Comments Comments in code contribute to various aspects. They can enhance the read-
ability of the code and clarify the structure of the code to the developer or other mem-
bers of the OSS community. As a result, comments contribute to both changeability
and analyzability. The original maintainability index of Coleman et al. [7], for which
the SIG maintainability model is an alternative, has an optional metric to include the
percentage of comments in the total score of the maintainability index. The original
MI has a maximum score of 171, which can be increased by 50 with an optional metric
for comments. This additional score can be calculated using the following formula [7]:

MI additional score = 50 · sin
(√

2.46 ·PERCENTAGE_COMMENTS
)

PERCENTAGE_COMMENTS represents the percentage of all comment lines relative to
the total number of lines. The formula returns a score for the percentage of comments
in the code and has a maximum value of 50. A representation of the results of the
formula is shown in the graph of figure 4.1. For example: with a comments percentage
of 28% the score is 36.9, with 36% the score is 40.4. We have classified the scores that
can be achieved into a ranking. These rankings are listed in table 4.1.

25

Figure 4.1: Percentage comments and their corresponding scores

Rank MI score comments

++ 40-50
+ 30-40
o 20-30
− 10-20
−− <10

Table 4.1: Ranking of comments

When we convert these rankings to the associated percentages, we obtain the table as
shown in 4.2. The ++ ranking has a significant weight on the overall score. To mitigate
this, we combined the metric from Misra et al. for this ranking [14]. According to Misra
et al., the relevance of comments is important for the time required to resolve issues.
This percentage is set at 88% relevant comments and is thus important to achieve a
++ ranking. As a result, we not only consider the quantity of comments but also their
quality. For example: a percentage of comments of 35% (or above) of which 88% (or
above) are relevant, the score is ++. Otherwise it is + or lower (table 4.2).

Percentage comments
Rank Percentage comments total Percentage relevant comments

++ 35% 88%
+ 17% -
o 7% -
− 2% -
−− - -

Table 4.2: Ranking of percentage comments

4.3. FINAL MAINTAINABILITY SCORE
Based on the metrics related to the community, we can measure how sticky and magnetic a
repository is during a specific period. With these values, we can determine the OSS commu-

26

nity category. So a repository is: attractive, fluctuating, stagnant or terminal. For the main-
tainability part, we use the mapping table, as listed in table 4.3. There are 3 maintainability
characteristics: analysability, changeability and testability. These characteristics have their
own score based on the average of the metrics related to them. For example the outcome for
changeability is: the average of the measurement outcomes of cyclomatic complexity, du-
plication, and comments. The original SIG maintainability model also has a maintainability
characteristic for stability. This is not included in our research because it is only based on
the unit test metric, which we do not use.

Vo
lu

m
e

C
yc

lo
m

at
ic

co
m

p
le

xi
ty

D
u

p
li

ca
ti

o
n

U
n

it
si

ze

C
o

m
m

en
ts

Analysability x x x x
Changeability x x x
Testability x x

Table 4.3: Mapping back the proposed maintainability model to maintainability characteristics of the ISO
9126 model

With this model, we can measure the popularity and maintainability for each OSS repository,
making it suitable for answering our other research questions.

27

5
DETERMINING THE MAINTAINABILITY OF

OSS COMMUNITY CATEGORIES

Using the quality model resulted from SQ1, we can answer sub question 2: How can we de-
termine maintainability for the selected OSS projects?

We have developed a tool that can measure the described metrics from the quality model.
The GitHub Data tool (GHD) uses our composed dataset with GitHub metadata (section 3.2).
Because the use of a graphical interface is not necessary, we have chosen to develop a com-
mand line (CLI) tool. We developed GHD using the Laravel Zero framework 1 for PHP 2. This
framework is focused on the development of CLI tools. The source code of GHD is available
on GitHub 3. When GHD is executed with specific arguments and options, a selected repos-
itory within a specific period can be measured. During measurement, GHD uses various
external tools, such as Cloc, PMD and Simian, to support in calculating various metrics. The
results can be returned in CSV, JSON, or as terminal output. All results are also stored in a
MySQL database. It is possible to provide an UUID (universally unique identifier, consisting
of 32 characters) as an option. With these UUID it is possible to trace back the related results
in de MySQL database for the current GHD run. The execution of GHD proceeds as below.
The owner and the repository should exist in the dataset:

ghd get:project-state <owner> <repository> [options]

Options:

--run-uuid[=RUN-UUID] Run ID (UUID)
--start-date[=START-DATE] Starting date (YYYY-MM-DD)
--end-date[=END-DATE] End date (YYYY-MM-DD), default today
--interval[=INTERVAL] Interval (week(s), default 26) [default: "26"]
--output-format[=OUTPUT-FORMAT] Output format (json, csv or cli) [default: "cli"]

The execution example below measures the project Strassen-matrix-multiplication-Java in
our dataset, during the default period of 26 weeks (half a year) starting at 01-01-2019 until
02-07-2019. The results are saved as a CSV file.

1https://laravel-zero.com/
2https://www.php.net
3https://github.com/jpduits/ghd

28

https://laravel-zero.com/
https://www.php.net
https://github.com/jpduits/ghd

ghd get:project-state MoeidHeidari Strassen-matrix-multiplication-Java
--start-date=2019-01-01 --output-format=csv

When we create a bash script that iterates through all 90 repositories in our dataset, we ex-
ecute GHD for every repository and obtain a complete set of results as output and in our
database. During the execution of GHD, various measurements are carried out on the se-
lected repository. When a start date, interval, and end date are provided, multiple periods
are measured between this start and end date. These measurements relate to community
and maintainability aspects or metrics. Both will be further described in section 5.1 and
section 5.2. For each repository, the data for each measured period is stored as shown in
table 5.9.

5.1. MEASURING THE MAINTAINABILITY OF OSS PROJECTS
To determine maintainability, GHD needs the source code available that was relevant at the
selected period. Therefore, it first clones the respective repository using Git. This is done
in a temporary directory. GHD checks out on a commit of the default branch (mostly the
main or master branch) that is closest to the end date and not older than the start date of
the period. If there is no commit available in this period it takes the last commit before
the start date. With the source code now available, GHD can perform the measurements
as described below. It measures only the .java files and excludes files related to (unit) tests.
GHD generates a file list that can be used by various metrics so all metrics and external tools
work with the same files. Determining lines of code (LOC) can be done in various ways, such
as using NCSS 4, for example. Since not all tools support all LOC methods, GHD uses the
most common approach: all lines of code except comments and blank lines, as suggested
by Heitlager et al. [10].

Volume To calculate the volume of a repository, GHD uses the cloc tool 5. Cloc returns the
number of blank lines, comment lines, and code lines for the file list we have defined.
Based on the number of lines of source code, GHD can apply the SIG ranking as listed
in table 2.7.

Unit size A unit is the smallest piece of code that can be executed and tested [10]. In our
measurements, we consider methods and constructors as units. The LOC of a unit
can be measured using the Checkstyle tool 6. This tool allows GHD to retrieve the LOC
for all methods and constructors in our files from the file list and assign a risk to them,
as listed in table 2.11. When each method has been assigned a risk, GHD can calculate
the relative percentages based on the total LOC and classify them according to the SIG
ranking from table 2.12. The LOC of each unit are also used for the complexity per unit
metric.

Complexity per unit To calculate the cyclomatic complexity of all methods in the files from
the file list, GHD uses the PMD tool 7. PMD uses the formula v(G) = e −n +2 as de-
scribed in 2.3.4 8. GHD calculates the cyclomatic complexity for each method and

4https://docs.pmd-code.org/pmd-doc-6.21.0/pmd_java_metrics_index.html#
non-commenting-source-statements-ncss

5https://github.com/AlDanial/cloc
6https://checkstyle.org/checks/sizes/methodlength.html
7https://pmd.github.io/
8https://docs.pmd-code.org/apidocs/pmd-java/7.0.0-rc4/net/sourceforge/pmd/lang/java/
metrics/JavaMetrics.html#CYCLO

29

https://docs.pmd-code.org/pmd-doc-6.21.0/pmd_java_metrics_index.html##non-commenting-source-statements-ncss
https://docs.pmd-code.org/pmd-doc-6.21.0/pmd_java_metrics_index.html##non-commenting-source-statements-ncss
https://github.com/AlDanial/cloc
https://checkstyle.org/checks/sizes/methodlength.html
https://pmd.github.io/
https://docs.pmd-code.org/apidocs/pmd-java/7.0.0-rc4/net/sourceforge/pmd/lang/java/metrics/JavaMetrics.html##CYCLO
https://docs.pmd-code.org/apidocs/pmd-java/7.0.0-rc4/net/sourceforge/pmd/lang/java/metrics/JavaMetrics.html##CYCLO

assign them to a risk as listed in table 2.8. Based on the LOC of the methods, GHD
can calculate the relative risks compared to the total LOC and assign a SIG ranking as
shown in table 2.9.

Duplication The tool GHD uses to detect duplicates of more than 6 lines is Simian Similar-
ity Analyzer9, a Java written tool with a lot of options such as lines threshold10. Simian
goes through all files in the file list. With the relative percentage of LOC of all dupli-
cates to the total LOC, GHD can determine the SIG ranking, as listed in table 2.10.

Comments By using regular expressions, GHD filters out the comment lines (single line,
in line, and multi-line) from the source code in the files of the file list. GHD counts
the number of lines in all returned comment blocks and classify the comments based
on relevance (section 2.4). For classification, GHD uses a random forest classification
model, which is implemented using the Scikit-learn 11 library. Based on the rankings
in table 4.2 a ranking for comments is assigned.

With the collected data from the metrics, GHD can determine the final SIG maintainability
scores for analysability, changeability, and stability. These scores are determined based on
the average scores of the metrics, as described in table 5.1. All collected data will be stored
in a database and is traceable by the UUID. Refer to table 5.9 for an overview of the collected
data related to maintainability.

5.1.1. VALIDATION
To validate the calculations of the SIG maintainability model (section 2.3.4), we manually
computed the metrics. We have picked a smaller repository for this task because it was not
doable manually with larger ones. Our test repository was "Strassen-matrix-multiplication-
Java"12 (Strassen-matrix). If possible, we also computed the metrics manually for the "exchange-
core" repository. When we executed our GHD tool, the calculated results of the SIG main-
tainability model for these repositories were as outlined in table 5.1.

VOLUME

The repository "Strassen-matrix" consists of only 1 Java file. This file contains 170 lines.
According to our tool, the "Strassen.java" file has 110 lines of clean code. When we manually
remove all the blank lines and comment blocks, we also end up with 110 lines. These are all
lines of code, without comments. This includes imports, interfaces, class definitions and so
on.

COMPLEXITY PER UNIT

We manually calculate the CC of several methods in the repositories "Strassen-matrix" and
"exchange-core". We compare these calculations with the results from our tool, which uses
the PMD tool 13. The results are in table 5.2. We note that all methods in "Strassen-matrix"
have a CC lower than 10, and as a result, they are all categorized at low risk (section 2.3.4). In
Table 5.1, we can see that all lines (103) are classified at low risk. The number of lines is 103
because only the code of the methods is counted. The SIG complexity ranking is thus ++.

9https://simian.quandarypeak.com/
10https://simian.quandarypeak.com/docs/#options
11https://scikit-learn.org
12https://github.com/MoeidHeidari/Strassen-matrix-multiplication-Java
13https://pmd.github.io/

30

https://simian.quandarypeak.com/
https://simian.quandarypeak.com/docs/##options
https://scikit-learn.org
https://github.com/MoeidHeidari/Strassen-matrix-multiplication-Java
https://pmd.github.io/

Metric Strassen-matrix exchange-core
Commit SHA 34f1861 2f85487
Total LOC (excluding comments or blank lines) 110 7538
Total lines (including comments, excluding blank lines) 139 9888
SIG volume ranking ++ ++
LOC complexity per risk (only executable units) low: 103 low: 4399

moderate: 0 moderate: 307
high: 0 high: 544
very high: 0 very high: 0

Percentage complexity per risk (only executable units) low: 94% low: 58%
moderate: 0% moderate: 4%
high: 0% high: 7%
very high: 0% very high: 0%

LOC unit size per risk (only executable units) low: 63 low: 3980
moderate: 40 moderate: 396
high: 0 high: 488
very high: 0 very high: 386

Percentage unit size per risk (only executable units) low: 57% low: 53%
moderate: 36% moderate: 5%
high: 0% high: 6%
very high: 0% very high: 5%

SIG complexity ranking ++ o
SIG unit size ranking − +
Duplication line count 0 218
Duplication block count 0 50
Duplication percentage 0 3%
SIG duplication ranking ++ ++
Comments ranking + ++
SIG analysability ranking + ++
SIG changeability ranking ++ +
SIG testability ranking + +

Table 5.1: SIG maintainabilty model results for the validation purpose

UNIT SIZE

We are manually counting the lines of code for multiple methods within the "Strassen-
matrix" repository. The lines of code found by our tool, which uses PMD, do not match our
manual count. PMD does not count the lines of code but the non commenting source state-
ments (NCSS14). In essence, it is cleaner counting only ; and { as lines but does not match
with our other metrics within our tool and disrupts other calculated metrics. We replaced
PMD for counting lines with the CheckStyle15 application, which follows the conventional
loc counting method. This tool counts the loc for each method body (including { and }). In
table 5.3 are the results of the validation count.

14https://docs.pmd-code.org/apidocs/pmd-java/7.0.0-SNAPSHOT/net/sourceforge/pmd/lang/
java/metrics/JavaMetrics.html#NCSS

15https://checkstyle.org/

31

https://docs.pmd-code.org/apidocs/pmd-java/7.0.0-SNAPSHOT/net/sourceforge/pmd/lang/java/metrics/JavaMetrics.html#NCSS
https://docs.pmd-code.org/apidocs/pmd-java/7.0.0-SNAPSHOT/net/sourceforge/pmd/lang/java/metrics/JavaMetrics.html#NCSS
https://checkstyle.org/

Repository Commit SHA File @ Method CC CC (Manual)
Strassen-matrix 34f1861 Strassen.java @ StrassenMultiply 2 2 (5 nodes, 5 edges)
Strassen-matrix 34f1861 Strassen.java @ main 5 5 (13 nodes, 16 edges)
Strassen-matrix 34f1861 Strassen.java @ addMatrices 3 3 (7 nodes, 8 edges)
Strassen-matrix 34f1861 Strassen.java @ subMatrices 3 3 (7 nodes, 8 edges)
Strassen-matrix 34f1861 Strassen.java @ printMatrix 3 3 (7 nodes, 8 edges)
Strassen-matrix 34f1861 Strassen.java @ divideArray 3 3 (7 nodes, 8 edges)
Strassen-matrix 34f1861 Strassen.java @ copySubArray 3 3 (7 nodes, 8 edges)
exchange-core 2f85487 ExchangeApi.java (298) @ publishBinaryData 3 3 (7 nodes, 8 edges)
exchange-core 2f85487 OrderBookDirectImpl.java (363) @ reduceOrder 6 6 (9 nodes, 13 edges)
exchange-core 2f85487 RiskEngine.java (521) @ canPlaceMarginOrder 5 5 (9 nodes, 12 edges)
exchange-core 2f85487 HashingUtils.java (68) @ checkStreamsEqual 4 4 (6 nodes, 8 edges)

Table 5.2: Cyclomatic Complexity Comparison

In the repository "Strassen-matrix" we can see that there is a single method with 40 LOC
(moderate risk), and the rest all have a LOC that is no higher than 30 (low risk). In the result
in table 5.1, under "LOC unit size per risk" we find values of 63 for low and 40 for moderate.
So this measurement is valid.

Repository Commit SHA File @ Method NCSS LOC LOC (manual)
Strassen-matrix 34f1861 Strassen.java @ StrassenMultiply 38 40 40
Strassen-matrix 34f1861 Strassen.java @ main 17 22 22
Strassen-matrix 34f1861 Strassen.java @ addMatrices 7 10 10
Strassen-matrix 34f1861 Strassen.java @ subMatrices 7 10 10
Strassen-matrix 34f1861 Strassen.java @ printMatrix 8 11 11
Strassen-matrix 34f1861 Strassen.java @ divideArray 4 5 5
Strassen-matrix 34f1861 Strassen.java @ copySubArray 4 5 5
exchange-core 2f85487 ExchangeApi.java (298) @ publishBinaryData 13 19 19
exchange-core 2f85487 SimpleEventsProcessor.java (38) @ sendTradeEvents 11 22 22
exchange-core 2f85487 SimpleEventsProcessor.java (67) @ sendTradeEvent 11 44 44
exchange-core 2f85487 L2MarketData.java (49) @ L2MarketData 9 10 10

Table 5.3: Unit size comparison

DUPLICATION

For measuring code duplicates, we use the Simian application16. We tested this application
with the "exchange-core" repository and found 48 duplicates (blocks) of 6 or more lines.
The total duplicated line count is 212 loc. Since Simian is one of the few tools that compares
based on the number of lines, it is challenging to find a comparable tool. We can not use
PMD for the comparison because it assesses based on a maximum number of tokens rather
than lines. Because Simian is a widely used and also commercial tool, we consider the results
to be valid.

COMPARISON WITH EXISTING SIG CALCULATIONS

At the Open University, assignments were created that make use of the SIG maintainability
model to calculate metrics for several repositories. We imported the repositories: Jabber-
point17, SmallSQL18 and HyperSQL19 into GHD and compared the results as shown in table
5.4. The rankings for analysability, changeability, and testability may differ because GHD
does not use unit testing metric for the calculations, but uses the comments metric.

16https://simian.quandarypeak.com/
17https://github.com/jpduits/jabberpoint
18https://github.com/jpduits/smallsql
19https://github.com/jpduits/hsqldb

32

https://simian.quandarypeak.com/
https://github.com/jpduits/jabberpoint
https://github.com/jpduits/smallsql
https://github.com/jpduits/hsqldb

Metric SmallSQL HyperSQL Jabberpoint
Total LOC 19346 143721 669
(excluding comments or blank lines)

Total lines 27411 211732 868
(including comments, excluding blank lines)

SIG volume ranking ++ + ++
LOC complexity per risk low: 11375 low: 74048 low: 556
(only executable units) moderate: 1653 moderate: 20398 moderate: 0

high: 2510 high: 17230 high: 0
very high: 1036 very high: 14574 very high: 0

Percentage complexity per risk low: 59% low: 52% low: 83%
(only executable units) moderate: 9% moderate: 14% moderate: 0%

high: 13% high: 12% high: 0%
very high: 5% very high: 10% very high: 0%

LOC unit size per risk low: 11461 low: 63798 low: 408
(only executable units) moderate: 1138 moderate: 11900 moderate: 72

high: 1882 high: 16440 high: 0
very high: 2094 very high: 34112 very high: 76

Percentage unit size per risk low: 59% low: 44% low: 61%
(only executable units) moderate: 6% moderate: 8% moderate: 11%

high: 10% high: 11% high: 0%
very high: 11% very high: 24% very high: 11%

SIG complexity ranking −− −− ++
SIG unit size ranking o −− −
Duplication line count 646 9248 0
Duplication block count 158 1701 0
Duplication percentage 3% 6% 0%
SIG duplication ranking + o ++
SIG analysability ranking + o +
SIG changeability ranking o o ++
SIG testability ranking − −− +

Table 5.4: SIG maintainabilty model results for sample projects

COMMENTS

When calculating the metric to determine the percentage of relevant comments (section
2.4), we run a Python script that uses a Random Forest classifier. Because it is crucial to
ensure the correctness of the classifications, we evaluate various formulas to measure pre-
cision, recall and accuracy. The formulas make use of the terms as listed in table 5.5. The
formulas are defined as follows ([14]):

Precision = |TP|
|TP|+ |FP| OR

|TN|
|TN|+ |FN|

Recall = |TP|
|TP|+ |FN| OR

|TN|
|TN|+ |FP|

Accuracy = |TP|+ |TN|
|TP|+ |TN|+ |FP|+ |FN|

33

We have classified the comments for 5 repositories using our Python script, and then manu-
ally assigned the TP, FP, FN, or TN labels (see table 5.6). The spreadsheets we used for manual
processing can be found in our GHD repository on GitHub 20. Using these results, we cal-
culated accuracy, precision, and recall. The results are listed in table 5.7. The definitions
of relevant and auxiliary comments are described in section 2.4. We assess that accuracy,
precision, and recall have very high values (with a maximum of 1), indicating that our clas-
sification script provides excellent and validated results.

Term Description
True Positive (TP) The model correctly predicts "RELEVANT"
False Positive (FP) The model predicts "RELEVANT", but it is "AUXILIARY"
False Negative (FN) The model predicts "AUXILIARY", but it is "RELEVANT"
True Negative (TN) The model correctly predicts "AUXILIARY"

Table 5.5: Definitions of evaluation terms.

Repository Comments Relevant Auxiliary FP TP FN TN
Strassen-matrix 16 11 5 0 11 5 0
cron-utils 445 360 85 0 360 1 84
exchange core 914 773 141 0 773 68 73
Zip4j 337 288 49 0 288 7 42
eureka 1669 1295 374 0 1295 16 358
Total 3381 2727 654 0 2727 97 557

Table 5.6: Classification evaluation

Repository Accuracy Comments Precision Recall

Strassen-matrix 0.69
Relevant comments 1 0.69
Auxiliary comments 1 -

cron-utils 1
Relevant comments 1 0.99
Auxiliary comments 0.99 1

exchange core 0,93
Relevant comments 1 0.92
Auxiliary comments 0.52 1

Zip4j 0.98
Relevant comments 1 0.98
Auxiliary comments 0.86 1

eureka 0.99
Relevant comments 1 0.99
Auxiliary comments 0.96 1

Total 0.97
Relevant comments 1 0.97
Auxiliary comments 0.85 1

Table 5.7: Accuracy, precision and recall of Random Forrest classifier

5.2. MEASURING THE COMMUNITY ASPECTS OF OSS PROJECTS
The community aspect of the quality model is measured using the GitHub metadata from
our dataset, such as the Git commit history. Our GHD tool also stores a lot of data that is
not currently used in this research but may be useful in the future. In the quality model,

20https://github.com/jpduits/ghd/tree/main/scripts/validation/comments

34

https://github.com/jpduits/ghd/tree/main/scripts/validation/comments

GHD measures the popularity of a repository using the metrics of Yamashita et al. [24] (sec-
tion 2.2). To calculate these metrics, GHD filters Git metadata of a selected period from the
dataset. GHD calculates the sticky and magnet value using 2 metrics.

Sticky To calculate the sticky value, GHD needs the contributors from the selected period
and the contributors from the previous period. GHD retrieves this data using a MySQL
query on the dataset. GHD queries all unique author_id of all commits within the
selected period of the respective repository. It also includes the commits associated
with pull requests that are (not yet) merged. GHD executes the same query for the
previous period (determined based on the interval). GHD now has two sets of unique
author_id. With these two sets of unique author_id, it can now determine which
author_id have contributed to the repository in both the current and the previous
period. GHD can now calculate the sticky value using the formula described in section
4.1.

Magnet The magnet value is determined based on the number of new contributors of the
repository in the respective period compared to the total number of unique contrib-
utors. By using MySQL queries on the dataset, GHD can retrieve this information. It
first queries all unique author_id of all commits, including the commits associated
with pull requests, before selected period of the respective repository. Afterward, GHD
does the same for the selected period only. It now has two sets of unique author_id
allowing us to determine which contributors are new (have not appeared in any pe-
riod before). It is now possible to calculate the magnet value using the formula as
described in section 4.1.

With the calculated magnet and sticky values, GHD can determine the final OSS community
category. All collected data from the metrics is stored in the database. Because our dataset
contains a lot of metadata, GHD also stores a lot of unused information, such as the number
of forks or stargazers in the selected period. Refer to table 5.9 for an overview of the collected
data related to the community.

5.2.1. VALIDATION

We can validate the metrics used for calculating Yamashita et al. OSS community categories
(section 2.2) by performing several sample tests. For this sample test, we use the median
values based on our measurement results in the database (sticky: 0.25, magnet: 0,0613385).
We have performed calculations for "exchange-core" and "dubbo" 21. We are measuring
the period from 01-01-2019 to 02-07-2019. We first started with "exchange-core", the total
number of developers until 02-07-2019 for this repository was 3. Of these, 1 was new during
the measured period. It was noticeable that among these 3 developers, 2 shared the same
email address but had different names. When we dug deeper, we discovered that our user
table had quite a few duplicate users, all using the same email addresses. If we do not fix
this, our measurements might not be right. To clear things up, we decided to tidy up the
data in the database. We merged all users in the users table with the same email address and
updated all references in linked tables. In this process, we picked the user with the longest
name to represent them. Now, when we look at the same data, we see a total of 2 developers
until 02-07-2019. This has an impact on the metrics of Yamashita et al.. This means that

21https://github.com/apache/dubbo

35

https://github.com/apache/dubbo

initially, the magnet value was:

Magnet value = 1

3
= 0.33

But now that the modification has been made, the result have changed:

Magnet value = 1

2
= 0.5

The sticky value also changed. We notice that before 01-01-2019, there was a single de-
veloper (according to the GitHub webpage). This was, according to our data, not the case
before our merging process. For the sticky value, we look at the developers over the current
period who were also active in the previous period, and the number of developers from the
previous period. In this case, there are 2 developers in the current period, and 1 of them was
also active in the previous period. The sticky value after our adjustments is calculated as:

Sticky value = 1

1
= 1

Because "exchange-core" is a repository with few developers, we have also conducted the
same measurements with a larger repository "dubbo". This repository has the total number
of 758 developers until 02-07-2019. Of these 758 developers, 156 developers were new in
current period. There were 211 developers active in current period, of these, 46 developers
were also active in the previous period. In the previous period, there were 264 developers
active. When we translate this into the Yamashita et al. formulas, we get the following values:

Magnet value = 156

758
= 0.2058, Sticky value = 46

264
= 0.1742

According to the median thresholds we use, the magnet value is high and the sticky value is
low. According to table 2.2, this repository falls into the fluctuating OSS community category
in this period.
After running the GHD for the "exchange-core" and "dubbo" repositories, over the specified
period, and after our database adjustments, we obtain the results as listed in table 5.8. The
calculation results are correct and therefore valid.

Parameter exchange-core dubbo
Period Start Date 01-01-2019 01-01-2019
Interval in weeks 26 26
Period End Date 02-07-2019 02-07-2019
Previous Period Start Date 03-07-2018 03-07-2018
Previous Period End Date 01-01-2019 01-01-2019
Developers with Contributions (Previous Period) 1 264
Developers with Contributions (Current Period) 2 211
Developers with Contributions (Both Periods) 1 46
Developers (Current Period) 2 211
New Developers (Current Period) 1 156
Total Developers until and including current period 2 758
Sticky Value 1 0.1742
Magnet Value 0.5 0.2058
OSS community category Attractive Fluctuating

Table 5.8: Yamashita metric calculations for "exchange-core" and "dubbo"

36

5.3. COLLECTED DATA
When everything has been processed, our GHD tool returns the data for every repository
from our dataset as shown in table 5.9. We can use this collected data for our research ques-
tions.

Table 5.9: Collected data

Related to Name Description
run_uuid UUID of run.
repository_id ID of the repository in the

project_states table.
full_name Full name of repository on GitHub.

Community and
maintainability

period_start_date Start date of measurement period.

Community and
maintainability

period_end_date End date of measurement period.

Community previous_period_start_date Start date of previous period (for
measuring Yamashita metrics).

Community previous_period_end_date End date of previous period (for mea-
suring Yamashita metrics).

Community and
maintainability

interval_weeks Number of weeks for measurement
period. Default value is 26 (6
months).

maintainability total_loc Total lines of code (excluding com-
ments or blank lines)

maintainability total_kloc total_loc converted to thousands
maintainability total_lines Total lines of code (including com-

ments, excluding blank lines). Used
for comments metric (section 2.4).

maintainability volume_ranking Ranking for volume. Possible values:
++, +, o, − or −−.

maintainability loc_unit_size_per_risk Total LOC of methods, per risk (low,
moderate, high of very high) based
on total_loc. For example:

low: 14199 lines
moderate: 1761 lines
high: 971 lines
very_high: 555 lines

maintainability percentage_unit_size_per_risk Percentage LOC of methods, per risk
(low, moderate, high of very high)
based on total_loc. For example:

low: 58.768%
moderate: 7.289%
high: 4.019%
very_high: 2.297%

maintainability unit_size_ranking Ranking for unit size. Possible values:
++, +, o, − or −−.

maintainability loc_complexity_per_risk Total LOC of cyclomatic complexity
per risk (low, moderate, high of very
high) based on total_loc. For ex-
ample:

The list continues on the next page

37

Table 5.9 – Continuation from the previous page
Related to Name Description

low: 32529 lines
moderate: 3297 lines
high: 945 lines
very_high: 0 lines

maintainability percentage_complexity_per_risk Percentage LOC of cyclomatic com-
plexity per risk (low, moderate, high
of very high) based on total_loc.
For example:

low: 65.173%
moderate: 6.606%
high: 1.893%
very_high: 0%

maintainability complexity_ranking Ranking for complexity per unit. Pos-
sible values: ++, +, o, − or −−.

maintainability duplication_line_count Duplicated LOC with a threshold of 6
lines.

maintainability duplication_block_count Duplicated blocks of code with a
threshold of 6 lines.

maintainability duplication_percentage Percentage duplicated LOC
(duplication_line_count) of
total LOC (total_loc).

maintainability duplication_ranking Ranking for duplication. Possible val-
ues: ++, +, o, − or −−.

maintainability comments_loc LOCO (lines of comments) of all
comments.

maintainability comments_total Total number of comments (single
line, multiple line or inline).

maintainability comments_relevant_percentage Percentage relevant comments.
maintainability comments_relevant Number of relevant comments.
maintainability comments_copyright Number of copyright comments.
maintainability comments_auxiliary Number of auxiliary comments.
maintainability comments_relevant_loc LOCO of relevant comments.
maintainability comments_copyright_loc LOCO of copyright comments.
maintainability comments_auxiliary_loc LOCO of auxiliary comments.
maintainability comments_percentage Percentage comments based on

total_lines.
maintainability comments_ranking Ranking for comments. Possible val-

ues: ++, +, o, − or −−.
maintainability analysability_ranking Maintainability score for analysabil-

ity. Possible values: ++, +, o, − or−−.
maintainability changeability_ranking Maintainability score for changeabil-

ity. Possible values: ++, +, o, − or−−.
maintainability testability_ranking Maintainability score for testability.

Possible values: ++, +, o, − or −−.
The list continues on the next page

38

Table 5.9 – Continuation from the previous page
Related to Name Description
maintainability overall_ranking Overall score for maintainability

based on analysability_ranking,
changeability_ranking,
testability_ranking, and
stability_ranking. For
stability_ranking, a neutral
ranking of o is used. Possible values:
++, +, o, − or −−.

community devs_with_contr_prev_period Developers with contributions in
previous period.

community devs_with_contr_cur_period Developers with contributions in
measurement period.

community devs_with_contr_prev_and_current_period Developers with contributions in
current measurement period and
previous period.

community sticky_value Calculated sticky value of Yamashita
et al. metric [24].

community devs_cur_period Developers in current measurement
period.

community devs_new_cur_period New developers in current measure-
ment period.

community devs_total Total developers until current mea-
surement period.

community magnet_value Calculated magnet value of Ya-
mashita et al. metric [24].

community quadrant (OSS community category) Determined OSS community cate-
gory of Yamashita et al. based on
sticky_value and magnet_value.
Possible values: attractive, fluctuat-
ing, stagnant and terminal.

community (fu-
ture use)

issues_count_current_period Number of issues measurement pe-
riod.

community (fu-
ture use)

issues_count_total Total number of issues.

community (fu-
ture use)

stargazers_count_current_period Number of stargazers measurement
period.

community (fu-
ture use)

stargazers_count_total Total number of stargazers.

community (fu-
ture use)

pull_requests_count_current_period Number of pull requests measure-
ment period.

community (fu-
ture use)

pull_requests_count_total Total number of pull requests.

community (fu-
ture use)

forks_count_current_period Number of forks in measurement pe-
riod.

community (fu-
ture use)

forks_count_total Total number of forks.

community (fu-
ture use)

bugs_current_period Number of bugs in measurement pe-
riod.

community (fu-
ture use)

bugs_total Total number of bugs.

community (fu-
ture use)

bugs_closed_current_period Number of closed bugs in measure-
ment period.

community (fu-
ture use)

bugs_closed_total Total number of closed bugs.

The list continues on the next page

39

Table 5.9 – Continuation from the previous page
Related to Name Description
community (fu-
ture use)

support_current_period Number of support issues in mea-
surement period.

community (fu-
ture use)

support_total Total number of support issues.

community (fu-
ture use)

support_closed_current_period Number of closed support issues in
measurement period.

community (fu-
ture use)

support_closed_total Total number of closed support is-
sues.

community (fu-
ture use)

issues_average_duration_days Average days for closing issues.

40

6
SOFTWARE MAINTAINABILITY OF OSS

COMMUNITY CATEGORIES

6.1. MEASURING

For our main research question: how can software maintainability of OSS community cat-
egories as defined by Yamashita et al. [24] be characterized? and sub question 3: how does
software maintainability change when open source software projects make transitions be-
tween OSS community categories?, we need to measure the maintainability and community
metrics for the 90 repositories from our dataset with GHD. For each repository, we measure
different periods of 26 weeks, starting from 01-01-2019 to 28-06-2022. We use the measure-
ment periods as described in table 6.1.

Start Date End Date
01-01-2019 02-07-2019
02-07-2019 31-12-2019
31-12-2019 30-06-2020
30-06-2020 29-12-2020
29-12-2020 29-06-2021
29-06-2021 28-12-2021
28-12-2021 28-06-2022
28-06-2022 27-12-2022

Table 6.1: Measurement periods

There were four instances where a repository had no available commits for a period in 2019.
We have excluded the data from those periods for that repository from our results. There-
fore, for our 90 repositories, we end up with 716 measurements and 626 possible transitions.
When everything has been executed, we have 8 periods of measurement results for each
repository, with the last period ending on 27-12-2022. The thresholds for the OSS commu-
nity categories are determined by the median of the sticky and magnet values of all repos-
itories in all measured periods. The sticky threshold is 0.25 and the magnet threshold is
0.0613385 (section 2.2).

41

6.2. CHARACTERIZE MAINTAINABILITY OF OSS COMMUNITY CAT-
EGORIES

The main research question (section 3.1.1), has to characterize the software maintainability
of the OSS community categories. To characterize the software maintainability, we first take
a single measurement result from each repository. We take the period 28-06-2022 to 27-12-
2022 (26 weeks). We now have 90 measurement results over the same period.
To clarify our approach, we provide an explanation of 2 measurements. In our examples, we
measure the repositories of square/retrofit and alibaba/nacos from the dataset. In the last
commit of the measurement period we collected the developer related numbers as shown in
table 6.2. As mentioned in section 2.2, we consider a developer as someone who committed
code to Git for a project.

Pi−1 = 28-12-2021 to 28-06-2022

Pi = 28-06-2022 to 27-12-2022

Description square/retrofit alibaba/nacos
Total active developers 424 713
New developers (did not appear in previous commits) 7 96
Developers current period Pi 9 137
Developers previous period Pi −1 15 131
Developers with both periods Pi and Pi −1 2 36

Table 6.2: Number of developers in specific period

If we translate this into the sticky and magnet values of Yamashita et al. we can determine
the OSS community categories of these measurement period [24].

Magnet value square/retrofit = New developers in Pi = 7

Total developers = 424
= 0.01650943

Magnet value alibaba/nacos = New developers in Pi = 96

Total developers = 713
= 0,13464236

Sticky value square/retrofit = Developers period Pi , with contributions in Pi−1 = 2

Developers period Pi−1 = 15
= 0.13333333

Sticky value alibaba/nacos = Developers period Pi , with contributions in Pi−1 = 36

Developers period Pi−1 = 131
= 0,27480916

For square/retrofit both the magnet and the sticky value for period Pi are lower than the
thresholds for the OSS community category. Therefore, this repository falls into the OSS
community category terminal. This is the worst OSS community category and means that
the respective repository had difficulty attracting and retaining developers during this pe-
riod. The sticky and magnet values of alibaba/nacos for period Pi are both higher than the

42

thresholds and therefore fall into the best OSS community category attractive, which means
that the project attracts and retains developers.
Now that we know the OSS community categories, we see in table 6.3 the results of main-
tainability metrics that were measured by GHD in the relevant period Pi .

Measurement Ranking square/retrofit Ranking alibaba/nacos
volume_ranking ++ +
complexity_ranking − −
unit_size_ranking + ++
duplication_ranking o o
comments_ranking + o

Table 6.3: Measurements and rankings for square/retrofit and alibaba/nacos in period Pi (28-06-2022 to

27-12-2022)

If we map the rankings from table 6.3 back to the maintainability characteristics, we obtain
the values as shown in table 6.4. See section 2.3.4 to understand how the maintainability
characteristics are determined.

Maintainability characteristic Ranking square/retrofit Ranking alibaba/nacos
analyzability_ranking + +
changeability_ranking o o
testability_ranking o o
overall_ranking o o

Table 6.4: Maintainability characteristics for square/retrofit in period Pi (28-06-2022 to 27-12-2022)

OSS community category Count
Attractive (high sticky, high magnet) 16
Fluctuating (low sticky, high magnet) 12
Stagnant (high sticky, low magnet) 31
Terminal (low sticky, low magnet) 31
Total 90

Table 6.5: OSS community categories in period Pi (28-06-2022 to 27-12-2022)

We perform these same measurements for all 88 other repositories over the same period. For
a complete overview of all measurement results, download the spreadsheet on GitHub1. The
total of 90 repositories can be divided into the OSS community categories as shown in table
6.5. The bar chart of figure 6.1, shows the rankings of the maintainability characteristics per
OSS community category for period Pi .
In the scatter plots of figures 6.2a, 6.2b, 6.2c, 6.2d we visualize maintainability characteris-
tics of analysability, changeability and testability, respectively. On the horizontal axis, the
sticky value is displayed, and the vertical axis shows the magnet value. The cross in the heat
map is drawn at the median of the sticky and magnet values from our measurements. This
provides insight into which OSS community category a repository falls into. The colored cir-
cles represent the repositories, with the color representing the ranking of the quality of the
respective maintainability characteristic.

1https://github.com/jpduits/ghd_results/blob/main/results.ods

43

https://github.com/jpduits/ghd_results/blob/main/results.ods

Figure 6.1: Maintainability characteristics per OSS community category in period Pi (28-06-2022 to 27-12-2022)

The scatter plots only provide insight for a specific period. As shown in table 6.6, we have
measured our repositories in 8 different periods in our dataset. To visualize these periods,
we have created custom heatmaps that displays each maintainability characteristic ranking
for each period. For each ranking, we have created 2 heatmaps. The left heatmap shows the
OSS community categories as columns and the periods as rows. For each OSS community
category of the respective period, a repository is indicated by a block, with the color indi-
cating the ranking. The results from our example, see table 6.5, are shown on the bottom
period row of the heatmap. The right heatmap shows the same data in percentages. A block
is 100%, which is filled with the percentages of the characteristic rankings.

44

(a) OSS community categories and analysability in period Pi (b) OSS community categories and changeability in period Pi

(c) OSS community community categories and testability in period
Pi

(d) OSS community categories and overall maintainability ranking
in period Pi

Figure 6.2: The maintainability rankings and OSS community categories for period Pi (28-06-2022 to 27-12-2022)

45

OSS Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8
community 01-01-2019 02-07-2019 31-12-2019 30-06-2020 29-12-2020 29-06-2021 28-12-2021 28-06-2022
category 02-07-2019 31-12-2019 30-06-2020 29-12-2020 29-06-2021 28-12-2021 28-06-2022 27-12-2022
Attractive 28 32.18% 30 33.71% 35 38.89% 24 26.67% 25 27.78% 23 25.56% 19 21.11% 16 17.78%
Fluctuating 34 39.08% 22 24.72% 21 23.33% 22 24.44% 21 23.33% 13 14.44% 13 14.44% 12 13.33%
Stagnant 14 16.09% 17 19.10% 17 18.89% 12 13.33% 21 23.33% 23 25.56% 26 28.89% 31 34.44%
Terminal 11 12.64% 20 22.47% 17 18.89% 32 35.56% 23 25.56% 31 34.44% 32 35.56% 31 34.44%
Total 87 89 90 90 90 90 90 90

Table 6.6: OSS community categories per period

46

(a) Number of analysability rankings per period (b) Percentages of the analysability rankings per period

Figure 6.3: Heatmaps of analysability ranking per OSS community category

47

(a) Attractive (b) Fluctuating

(c) Stagnant (d) Terminal

Figure 6.4: Line chart of analysability per period in percentages

48

(a) Number of changeability rankings per period (b) Percentages of the changeability rankings per period

Figure 6.5: Heatmaps of changeability ranking per OSS community category

49

(a) Attractive (b) Fluctuating

(c) Stagnant (d) Terminal

Figure 6.6: Line chart of changeability per period in percentages

50

(a) Number of testability rankings per period (b) Percentages of the testability rankings per period

Figure 6.7: Heatmaps of testability ranking per OSS community category

51

(a) Attractive (b) Fluctuating

(c) Stagnant (d) Terminal

Figure 6.8: Line chart of testability per period in percentages

52

(a) Number of overall rankings per period (b) Percentages of the overall rankings per period

Figure 6.9: Heatmaps of overall maintainability ranking per OSS community category

53

(a) Attractive (b) Fluctuating

(c) Stagnant (d) Terminal

Figure 6.10: Line chart of overall maintainability per period in percentages

54

6.3. THE MAINTAINABILITY OF OSS COMMUNITY CATEGORIES AF-
TER TRANSITIONS

To answer sub question 3: how does software maintainability change when OSS projects
make transitions between OSS community categories (section 3.1.4), we determine for all
our measurements from section 6.1 whether the OSS community category has changed or
remained the same. When a project changes from a OSS community category, for example
from attractive to stagnant, we call this a transition. When a project does not change OSS
community categories, no transition occurs. For each repository, we have 8 measurement
periods, so there are 7 possible periods for a transition between OSS community categories.
See figure 6.11 for a visualization of the transitions periods. In total we have 90 repositories
with 716 measurement periods and 626 possible transitions. Table 6.7 shows.

Figure 6.11: Transitions between periods for a repository

OSS community category Measurement count
Attractive 200
Fluctuating 158
Stagnant 161
Terminal 197
Total measurement periods 716

Table 6.7: Measured OSS community categories in all 716 periods

For each transition, we analyzed whether the maintainability characteristics ranking have
increased (↑), decreased (↓), or remained the same compared to the previous period (=).
Table 6.8 provides an overview of the analysis. We applied the same principle to the met-
rics used, the results are in table 6.9. Figure 6.12a shows the transitions and the associ-
ated changing overall maintainability characteristics. The periods in which no transition
occurred and the associated changing overall maintainability characteristics are shown in
figure 6.12b.

6.3.1. CONCLUSION - ANSWERING SUB QUESTION 3
In our measured periods, there were 626 possible transitions, of which actual transitions to
another OSS community category occurred in 322 periods (51%). In 304 periods, no transi-
tion occurred and the OSS community category remained the same. When we analyze tables
6.8 and 6.9, it is noticeable that after transitions, a small percentage of changes can be ob-
served in both the maintainability characteristics and the source code properties. Looking
at the heatmaps of 6.2, you might expect that some changes in the maintainability charac-
teristics would occur in every period, but this is not the case. When the OSS community
category remains attractive, there are generally some more changes visible, but even here
the percentages are low. The changes primarily occur in the transitions between OSS com-
munity categories but not in maintainability characteristics. When we combine all 4 OSS

55

Transition Count % Analysability Changeability Testability Overall
= ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓

Stagnant → Terminal 33 10.25% 32 0 1 32 0 1 33 0 0 32 0 1
Stagnant → Fluctuating 4 1.24% 4 0 0 4 0 0 4 0 0 4 0 0
Stagnant → Attractive 22 6.83% 22 0 0 22 0 0 20 0 2 22 0 0
Terminal → Stagnant 35 10.87% 33 1 1 33 1 1 34 0 1 33 1 1
Terminal → Fluctuating 23 7.14% 21 0 2 21 0 2 21 0 2 22 0 1
Terminal → Attractive 22 6.83% 21 0 1 21 1 0 20 1 1 21 0 1
Fluctuating → Stagnant 8 2.48% 8 0 0 8 0 0 8 0 0 8 0 0
Fluctuating → Terminal 39 12.11% 39 0 0 38 0 1 39 0 0 39 0 0
Fluctuating → Attractive 40 12.42% 38 2 0 36 2 2 36 3 1 37 3 0
Attractive → Stagnant 33 10.25% 33 0 0 33 0 0 33 0 0 33 0 0
Attractive → Terminal 28 8.70% 26 2 0 28 0 0 27 0 1 25 2 1
Attractive → Fluctuating 35 10.87% 33 1 1 34 0 1 31 3 1 33 2 0
Transitions total 322 100% 310 6 6 310 4 8 306 7 9 309 8 5

No transition Count % Analysability Changeability Testability Overall
= ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓

Stagnant → Stagnant 71 23.36% 69 1 1 68 0 3 66 1 2 67 0 2
Terminal → Terminal 86 28.29% 86 0 0 85 1 0 85 1 0 86 0 0
Fluctuating → Fluctuating 59 19.41% 59 0 0 56 2 1 57 1 1 57 1 1
Attractive → Attractive 88 28.95% 79 3 6 79 6 3 85 1 2 81 2 5
No transition total 304 100% 293 4 7 288 9 7 293 4 5 291 3 8

Total 626

Table 6.8: Transitions between OSS community categories and their changing maintainability characteristics

(a) Transitions between OSS community categories and their
associated changing overall maintainability characteristics

(b) No transitions between OSS community categories and the
associated changing overall maintainability characteristics

Figure 6.12

community categories, we get a different overview as shown in figure 6.13. Now we see that
the maintainability characteristics remain relatively stable in each period, with only some
minor changes. The conclusion we can draw from this data is that a transition has minimal
effect on the maintainability characteristics.

6.4. CONCLUSION - ANSWERING MAIN RESEARCH QUESTION
Looking at table 6.6, we start with the attractive (28 repositories, 32%) and fluctuating (34
repositories, 39%) OSS community categories having the highest percentages in the first pe-
riod (01-01-2019). But these percentages slowly go down through the periods, ending up at
18% (16 repositories) for attractive and 13% (12 repositories) for fluctuating in the last pe-
riod (28-06-2022). The stagnant and terminal OSS community categories start with lower
percentages in the first period, 16% (14 repositories) and 13% (11 repositories) respectively.
But by the last period both categories increasing to 34% (31 repositories). The progression
of these OSS community categories is shown in the line chart of figure 6.14. Based on these
findings from our dataset, we can conclude that there is a reasonable chance that an OSS

56

(a) Analysability (b) Changeability

(c) Testability (d) Overall

Figure 6.13: Total rankings of maintainability characteristics
57

Transition Count % Complexity Volume Unit size Duplication Comments
= ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓

Stagnant → Terminal 33 10.25% 33 0 0 33 0 0 33 0 0 32 0 1 33 0 0
Stagnant → Fluctuating 4 1.24% 4 0 0 4 0 0 4 0 0 4 0 0 4 0 0
Stagnant → Attractive 22 6.83% 21 0 1 22 0 0 21 0 1 19 0 3 22 0 0
Terminal → Stagnant 35 10.87% 33 1 1 35 0 0 34 0 1 33 1 1 34 1 0
Terminal → Fluctuating 23 7.14% 22 0 1 23 0 0 21 0 2 22 0 1 21 1 1
Terminal → Attractive 22 6.83% 21 1 0 22 0 0 20 1 1 20 0 2 22 0 0
Fluctuating → Stagnant 8 2.48% 8 0 0 8 0 0 8 0 0 8 0 0 8 0 0
Fluctuating → Terminal 39 12.11% 38 0 1 39 0 0 38 0 1 39 0 0 39 0 0
Fluctuating → Attractive 40 12.42% 38 1 1 40 0 0 38 2 0 34 3 3 37 2 1
Attractive → Stagnant 33 10.25% 33 0 0 33 0 0 33 0 0 32 1 0 33 0 0
Attractive → Terminal 28 8.7% 27 0 1 28 0 0 27 1 0 27 1 0 27 1 0
Attractive → Fluctuating 35 10.87% 33 1 1 34 0 1 33 2 0 33 1 1 35 0 0
Transitions total 322 100% 311 4 7 321 0 1 310 6 6 303 7 12 315 5 2

No transition Count % Complexity Volume Unit size Duplication Comments
= ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓ = ↑ ↓

Stagnant → Stagnant 71 23.36% 67 0 4 70 0 1 66 3 2 69 1 1 71 0 0
Terminal → Terminal 86 28.29% 84 2 0 86 0 0 85 0 1 85 0 1 86 0 0
Fluctuating → Fluctuating 59 19.41% 58 0 1 59 0 0 57 1 1 57 1 1 55 2 2
Attractive → Attractive 88 28.95% 85 1 2 86 0 2 78 3 7 79 4 5 82 4 2
No transition total 304 100% 294 3 7 301 0 3 286 7 11 290 6 8 294 6 4

Total 626

Table 6.9: Transitions between OSS community categories and their source code properties

repository will decrease in popularity and struggle to attract new developers. This conclu-
sion seems to align with the fact that after a while, OSS projects may enter a more stabilized
phase, which is not attractive or dynamic enough to attract new developers, and mainly rely
on their core developers.
With the visualizations we have created (heatmaps and line charts), we can overview the
maintainability characteristics per OSS community category and assess if there is a rela-
tionship.

Analysability The ranking percentages for analysability are good for all OSS community
categories and remain good over time. It is noticeable that the stagnant and terminal
OSS community categories significantly more often score a ++ ranking. At the attrac-
tive and fluctuating OSS community categories the ++ rankings slowly change to +
rankings. Based on figure 6.4, we can conclude that a repository in a stagnant OSS
community category is likely to have the best analysability characteristics for main-
tainability.

Changeability For all the OSS community categories, the changeability most often ranks at
+, with stagnant and terminal having the higher percentages. Attractive and fluctu-
ating OSS community categories more often have a − ranking, than the stagnant and
terminal OSS community categories. But also, the percentage of o rankings is higher
than the percentage of ++ rankings. It is noticeable that for the terminal OSS com-
munity category, in the last 2 periods, the percentage ++ rankings, significantly have
increased. Based on this analysis and the line charts in figure 6.6, we can conclude that
the stagnant OSS community category has likely to best changeability characteristics
for maintainability.

Testability In the case of testability, a variety of ranking percentages are observed. How-
ever, across all OSS community categories, the testability characteristics are mostly
acceptable (++ or +). Interestingly, the percentage of ++ rankings is lower for the

58

Figure 6.14: Line chart for number of repositories per OSS community categories and period

attractive OSS community category and highest for the terminal OSS community cat-
egory. Furthermore, the terminal OSS community category has the lowest percentage
of − and −− rankings. From this, we can conclude that terminal projects often have
better testability characteristics for maintainability.

Overall When we look at the percentages of the overall rankings, we see that the average
maintainability is good enough. The total percentages for the better rankings (++ and
+) are higher for terminal and stagnant.

The final conclusion we can draw for our main research question (section 3.1.1) is that if
it becomes difficult for a repository to attract and retain new developers over time, which
is often the case, it is not necessarily detrimental to the maintainability characteristics. As
shown in figure 6.10, the results seem to indicate that projects with a small and stable devel-
oper base score better on maintainability than popular repositories with a high turnover of
new developers.

6.5. A MODEL TO PREDICT THE MAINTAINABILITY FOR AN OSS
COMMUNITY CATEGORY

To answer sub-question 4: How can we propose a predicting model for OSS software main-
tainability? (section 3.1.5), it was necessary to create an additional tool that uses a regres-
sion based model. This tool should make it possible to specify an OSS community category,
with 3 corresponding maintainability rankings, and based on this information, predict the

59

maintainability of the 4 possible future transitions. To build this tool, the Scikit-learn2 li-
brary was used. The tool consists of 3 parts: an adjusted dataset, a training script, and a
prediction script. The source code for this tool is available on GitHub3.

6.5.1. DATASET
To efficiently train our model, we have added four columns to our dataset that we can use
as features. For each record, the rankings and the OSS community category of the previous
period are added, if possible. With these added rankings, the model can be trained. 80% of
the dataset is used for training, 20% is used as the test set.

6.5.2. TRAIN A LINEAR REGRESSION MODEL
We have built a script that trains a linear regression model. For each period, we use the
previous maintainability rankings and the current OSS community category as input vari-
ables (features) and the current rankings as output (targets). We use these variables with the
standard functionality to train a linear regression model from the Scikit-learn library. After
training, the model is tested (see validation) and stored. The model can now be used in the
prediction script.

6.5.3. PREDICTION
The prediction script predicts future maintainability rankings for each possible OSS com-
munity category. It asks the trained model to make a prediction based on the given features.
These features are described in table 6.10.

Feature Description
oss_category The future OSS community category to predict (attrac-

tive, stagnant, fluctuating, or terminal).
prev_oss_category The current OSS community category (in the future,

this is the previous OSS community category). This
value is entered as an argument of the script.

prev_rankings The current maintainability rankings (analysability,
changeability, testability). These values are entered as
an arguments of the script.

Table 6.10: Features used for the prediction model

When the described features are provided to the model, we receive the predicted maintain-
ability rankings back. To get predictions for all 4 OSS community categories, the model is
consulted 4 times. The received rankings are translated into the SIG rankings and displayed
on the screen per OSS community category. See listing 6.1 for an example of the executed
script.

$ python predict.py Stagnant 3 3 4

Current OSS community Category: Stagnant

2https://scikit-learn.org
3https://github.com/jpduits/maintainability_predict

60

https://scikit-learn.org
https://github.com/jpduits/maintainability_predict

Current rankings:
Analysability: o (3.00)
Changeability: o (3.00)
Testability: + (4.00)

==============================

If next period is Attractive ,
the predicted rankings are:

Analysability: o (3.09)
Changeability: o (2.96)
Testability: + (3.89)

==============================

If next period is Fluctuating ,
the predicted rankings are:

Analysability: o (3.08)
Changeability: o (2.93)
Testability: + (3.89)

==============================

If next period is Stagnant ,
the predicted rankings are:

Analysability: o (3.13)
Changeability: o (2.95)
Testability: + (3.89)

==============================

If next period is Terminal ,
the predicted rankings are:

Analysability: o (3.12)
Changeability: o (2.96)
Testability: + (3.91)

==============================
$

Listing 6.1: Terminal output of prediction script

61

6.5.4. VALIDATION
To validate our trained model, we calculate the root mean squared error method (RMSE)
and the R-squared method on the 20% test set of the dataset. RMSE calculates the average
difference between the actual values and the values predicted by the model, squaring all
differences to treat both positive and negative deviations equally. Our model has the RMSE
values as listed in table 6.11. The R-squared method measures the percentage of variation
in the dependent variable that is explained by the independent variables in the model. The
value of the dependent variable ranges from 0 to 1, where 1 means that the model explains
the variation perfectly. For our model, the R-squared value is 0.95563, indicating that it ex-
plains 95.56% of the variability in the dependent variable.

Characteristic RMSE Value
Analysability 0.1037
Changeability 0.2149
Testability 0.1031

Table 6.11: RMSE Values for trained model

We observe small deviations for the respective characteristics. If the dataset were larger, the
deviations would be smaller. We can consider our model to be valid.

62

7
DISCUSSIONS

7.1. REFLECTION ON THE RESULTS
Our research indicates that the maintainability characteristics of open source software do
not significantly change with fluctuations in the popularity of a project. We measured this
on a dataset of 90 projects over 8 periods of 26 weeks each. However, the popularity of a
project does change regularly. During the measurements of our dataset, the OSS commu-
nity category changed between 51% of the periods. Interestingly, popular attractive projects
often end up in a terminal or stagnant OSS community category after several periods. This
transition usually does not affect the maintainability characteristics. It seems that after a
while, OSS projects enter a stable phase that is not attractive or dynamic enough for new
developers, and they eventually rely on their core members.
For projects where no OSS community category transition occurs between periods (49%),
we observed that projects in the attractive OSS community category experience changes in
the overall maintainability ranking more frequently than average. However, due to the lim-
ited number of projects, it is difficult to determine whether it is a trend. A larger dataset
could provide better insight into this.

Within the periods measured for our research, there is also the period that covers the COVID-
19 pandemic (March 2020). When we zoom in on this period, it is noticeable that there is a
drop in attractive and a peak in terminal OSS community categories. This is strange because
you would expect the opposite in OSS communities, as OSS developers are usually individ-
uals who contribute from home.
The results of our research differ from the expectations that changes in popularity would
have a significant impact on maintainability. This is not the case.

7.2. REFLECTION ON THE RESEARCH
Our research focused on analyzing the relationship between community aspects and main-
tainability of open source projects, using a dataset of 90 Java projects from GitHub. These
projects were randomly selected based on the number of stars to obtain as varied a dataset
as possible. Since existing datasets, such as GHTorrent by Gousios [9], were no longer main-
tained we had to create the dataset ourselves via the GitHub API. A larger dataset could pro-
vide more detailed insights, but this was not realistic because data collection via the GitHub
API is a time consuming process.

63

We composed a custom quality model after studying various existing models. We based our
model on metrics that were specifically relevant to our research. The calculation of main-
tainability is mainly based on the SIG maintainability model [10]. However, we did not in-
clude the unit tests metric because it is difficult to automate and prone to errors. Unit tests
are important and ideally should be included. The SIG maintainability model is an alterna-
tive to the maintainability index of Coleman et al. [7] but does not use metrics for comments
in the code. We have added the original metric for comments of Coleman et al. to our model
and expanded it with an additional metric for the percentage of relevant comments from
Misra et al. [14]. For the community aspects in our model, we measured the popularity of a
project based on the developer activity in Git commits during a selected period. We used the
metrics of Yamashita et al. for this [24]. However, community aspects include more than just
developer popularity. Activities such as responding to forum posts, documenting features,
or testing functionalities can also impact a community. Although we would have liked to in-
clude more community-specific aspects, such as the number of stars and the resolving time
of issues, assigning weighted quality rankings proved too complex to accomplish within the
available time. We have developed a quality model that is suitable for our research but can
still be expanded in the future.
To apply our quality model to our dataset, we developed a tool that can calculate the metrics
for each period and each repository. Existing tools, such as SonarQube, were not suitable for
automatically measuring a large number of repositories across different periods. It was also
complicated to implement the metrics we wanted to use, such as the SIG maintainability
model or the metrics of Yamashita et al., in SonarQube 1. Therefore, we created our own
terminal tool, which uses existing tools under the hood. The advantage of a custom devel-
oped tool is that it is tailored, which makes it easy to make adjustments in case of changes.
A disadvantage is that its development was time consuming. The tool we developed allows
us to quickly calculate metrics for selected periods for 90 repositories and store the results
in a database or file. The next phase of the research was analysing the results of the mea-
sured metrics. Visualizing the maintainability characteristics for specific OSS community
categories across various periods was challenging. We addressed this issue by using vari-
ous types of heatmaps. These heatmaps provided clear insights into the changes in specific
characteristics by OSS community category and period. Our other graphs, scatter plots, and
tables also provided a clear overview of the measured metrics. These visualizations helped
us to analyze and answer our main research question and sub question 3. With the results
in our database, we were able to train a linear regression model to use in a prediction tool.
With limited knowledge and without conducting in-depth research, we managed it to build
a tool using existing Python frameworks by studying some examples on the internet. We
were able to answer the optional research sub question 4 here.
Although the dataset and quality model could be improved, I believe we have effectively
addressed the research questions.

7.3. LIMITATION
During the research, we encountered several limitations. The GHTorrent [9] tool we wanted
to use was unavailable, so we wrote our own GitHub parser, which was time-consuming.
The open source quality model SQO-OSS [19], which we wanted to adapt our model to, was
not fully available. For example, the metrics that were used were not described anywhere.
Therefore, it was not possible to use this model.

1https://www.sonarsource.com/products/sonarqube/

64

https://www.sonarsource.com/products/sonarqube/

The metrics from the SIG maintainability model [10] on unit tests (code coverage and assert
statements) were not included in our quality model because they are difficult to automate
for so many instances. Therefore, we do not have a stability ranking. However, unit tests are
an important aspect of software quality and should ideally be included.
Some metrics use LOC, and as described in section 5.1, there are various techniques for
this. In our research, we use the traditional LOC, but it would be better to use the NCSS
technique. Unfortunately, this was not possible because not all the external tools we use
support the NCSS technique.

7.4. THREATS TO VALIDITY
In section 4.2, we replaced an existing metric on unit testing with a new metric for comments
that we composed. The rankings for this new metric were determined by us and are used in
assessing the final analysability and changeability rankings. Although we believe the final
ranking correctly reflects the data, it is possible that it produces results different from what
the original SIG maintainability model intended. Should future work reintroduce the metric
on unit testing (see section 7.5) while retaining the comments metric, it will be important to
assess the weightings of the rankings.

7.5. FUTURE RESEARCH
Due to the limited time available for our research, there are still various aspects, especially
regarding the OSS community, that could be interesting for future research. The answers
and results of our research questions can also provide interesting input for new or more in-
depth studies. Using a much larger dataset and a wider range of periods could also provide
different insights.

As described in section 7.1, there appears to be a variation in measurements during the
COVID-19 pandemic. We observe in figure 6.14 a peak in the terminal OSS state categories
and a downfall in the attractive OSS state categories around March 2020. It could be inter-
esting to study this in more detail. During the pandemic, research on this was already done
by Wang et al. [23]. According to this study, activities within GitHub communities seem to
have increased during the pandemic. However, it is noticeable that the number of new de-
velopers also experienced a dip at the end of 2019.
The measurements also indicate that projects often end up in the OSS state categories of
terminal or stagnant without the maintainability worsening. This suggests that the modi-
fications to these projects are carried out by a core group of developers who remain active.
This could also be interesting to study further.
In the composed quality model (section 4.1), the community aspect could be extended. Cur-
rently, only the activity of developers is considered, but for example, a bug reporter or some-
one who writes documentation is currently not included. Other aspects, such as the meta-
data from stars, issues or forks, might also provide insights about a community. For the
maintainability aspect, as mentioned in section 7.3, the model could be extended to include
metrics (code coverage, assert statements) on unit tests, as in the original SIG maintainabil-
ity model [10].

The dataset we used consists exclusively of Java repositories. The same research could also
be conducted with repositories from another programming language. PHP, for example,
could be a good choice because many OSS communities are active in it.

65

As mentioned in section 7.1, it seems that popular attractive projects struggle to maintain
high maintainability characteristics. This may be caused by peripheral developers and could
be an interesting topic for further research.

66

BIBLIOGRAPHY

[1] ISO/IEC 9126-1:2001. Standard, International Organization for Standardiza-
tion, 2001. URL https://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/02/27/22749.html. 2, 8, 9, 10

[2] ISO/IEC TR 9126-2:2003. Technical report, International Organization for Standard-
ization, 2003. URL https://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/02/27/22750.html. 8

[3] ISO/IEC TR 9126-3:2003. Technical report, International Organization for Standard-
ization, 2003. URL https://www.iso.org/cms/render/live/en/sites/isoorg/
contents/data/standard/02/28/22891.html.

[4] ISO/IEC TR 9126-4:2004. Standard, 2004. URL https://www.iso.org/cms/render/
live/en/sites/isoorg/contents/data/standard/03/97/39752.html. 8

[5] Rafa E Al-Qutaish. Quality models in software engineering literature: an analytical and
comparative study. Journal of American Science, 6(3):166–175, 2010. 7

[6] Youness Boukouchi, Abdelaziz Marzak, Habib Benlahmer, and Hicham Moutachaouik.
Comparative study of software quality models. IJCSI International Journal of Computer
Science Issues, pages 309–314, 2013. 7, 8, 9

[7] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, 1994. 25, 64

[8] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using metrics to evaluate
software system maintainability. Computer, 27(8):44–49, 1994. 11

[9] Georgios Gousios. The GHTorent dataset and tool suite. In 2013 10th Working Con-
ference on Mining Software Repositories (MSR), pages 233–236. IEEE, 2013. 5, 19, 63,
64

[10] Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring main-
tainability. In 6th international conference on the quality of information and commu-
nications technology (QUATIC 2007), pages 30–39. IEEE, 2007. 8, 11, 12, 13, 14, 15, 24,
29, 64, 65

[11] TJ McCabe. A complexity measure. IEEE Transactions on Software Engineering, 2(4):
308, 1976. 12

[12] Jim A McCall, Paul K Richards, and Gene F Walters. Factors in software quality. volume
i. concepts and definitions of software quality. Technical report, General Electric Co.,
Sunnyvale, CA (USA), 1977. 7

[13] Kelvin McClean, Des Greer, and Anna Jurek-Loughrey. Social network analysis of open
source software: A review and categorisation. Information and Software Technology,
130:106442, 2021. 2, 4, 5

i

https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/27/22749.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/27/22749.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/27/22750.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/27/22750.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/28/22891.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/28/22891.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/97/39752.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/03/97/39752.html

[14] Vishal Misra, Jakku Sai Krupa Reddy, and Sridhar Chimalakonda. Is there a correlation
between code comments and issues? an exploratory study. pages 110–117, 2020. 15,
16, 17, 26, 33, 64

[15] Kumiyo Nakakoji, Yasuhiro Yamamoto, Yoshiyuki Nishinaka, Kouichi Kishida, and Yun-
wen Ye. Evolution patterns of open-source software systems and communities. In Pro-
ceedings of the international workshop on Principles of software evolution, pages 76–85,
2002. 4, 5, 6

[16] Paul Oman and Jack Hagemeister. Metrics for assessing a software system’s maintain-
ability. In Proceedings Conference on Software Maintenance 1992, pages 337–338. IEEE
Computer Society, 1992. 11

[17] Saya Onoue, Hideaki Hata, Akito Monden, and Kenichi Matsumoto. Investigating and
projecting population structures in open source software projects: A case study of
projects in github. IEICE TRANSACTIONS on Information and Systems, 99(5):1304–
1315, 2016. 5

[18] Roger S. Pressman. Software engineering: a practitioner’s approach. McGraw-Hill, fifth
edition, 2001. 12, 13

[19] Ioannis Samoladas, Georgios Gousios, Diomidis Spinellis, and Ioannis Stamelos. The
SQO-OSS quality model: measurement based open source software evaluation. In IFIP
international conference on open source systems, pages 237–248. Springer, 2008. 64

[20] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis of source code
comments. pages 83–92, 2013. 15

[21] Igor Steinmacher, Gustavo Pinto, Igor Scaliante Wiese, and Marco Aurélio Gerosa. Al-
most there: A study on quasi-contributors in open-source software projects. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages 256–
266. IEEE, 2018. 2

[22] MR Martinez Torres, Sergio L Toral, M Perales, and Federico Barrero. Analysis of the
core team role in open source communities. In 2011 International Conference on Com-
plex, Intelligent, and Software Intensive Systems, pages 109–114. IEEE, 2011. 2

[23] Liu Wang, Ruiqing Li, Jiaxin Zhu, Guangdong Bai, Weihang Su, and Haoyu Wang. Un-
derstanding the impact of covid-19 on github developers: A preliminary study. In SEKE,
pages 249–254, 2021. 65

[24] Kazuhiro Yamashita, Shane McIntosh, Yasutaka Kamei, and Naoyasu Ubayashi. Mag-
net or sticky? an oss project-by-project typology. In Proceedings of the 11th working
conference on mining software repositories, pages 344–347, 2014. i, 2, 3, 5, 6, 18, 24, 35,
36, 39, 41, 42, 64

[25] Kazuhiro Yamashita, Yasutaka Kamei, Shane McIntosh, Ahmed E Hassan, and Naoyasu
Ubayashi. Magnet or sticky? measuring project characteristics from the perspective of
developer attraction and retention. Journal of Information Processing, 24(2):339–348,
2016. 2, 3, 6, 7

ii

[26] Yunwen Ye and Kouichi Kishida. Toward an understanding of the motivation of open
source software developers. In 25th International Conference on Software Engineering,
2003. Proceedings., pages 419–429. IEEE, 2003. 2, 4, 5

iii

APPENDIX A - GITHUB PROJECTS

Table 1: GitHub projects in the dataset

No. Project Created at Stars Forks
1 square/retrofit 2010-09-06 41252 7242
2 apache/dubbo 2012-06-19 38521 25697
3 skylot/jadx 2013-03-18 33651 4211
4 alibaba/nacos 2018-06-15 25656 11404
5 alibaba/fastjson 2011-11-03 25199 6521
6 alibaba/spring-cloud-alibaba 2017-12-01 24966 7655
7 greenrobot/EventBus 2012-07-16 24275 4678
8 seata/seata 2018-12-28 23424 8354
9 google/gson 2015-03-19 21907 4209

10 redisson/redisson 2014-01-11 20746 4988
11 alibaba/Sentinel 2018-04-04 20643 7496
12 termux/termux-app 2015-10-23 19932 2408
13 ReactiveX/RxAndroid 2014-08-19 19767 3009
14 apache/rocketmq 2016-11-30 18865 10632
15 brettwooldridge/HikariCP 2013-10-08 17934 2701
16 Tencent/tinker 2016-09-06 16701 3332
17 LMAX-Exchange/disruptor 2012-09-21 15811 3755
18 hdodenhof/CircleImageView 2014-01-17 14390 3140
19 baomidou/mybatis-plus 2016-08-18 14145 3845
20 alibaba/ARouter 2016-12-14 14117 2538
21 mockito/mockito 2012-10-13 13751 2369
22 GoogleContainerTools/jib 2018-01-22 12591 1356
23 Netflix/zuul 2013-03-13 12479 2278
24 Netflix/eureka 2012-07-26 11730 3674
25 redis/jedis 2010-06-11 10954 3730
26 code4craft/webmagic 2013-04-23 10755 4116
27 square/javapoet 2013-02-01 10101 1312
28 google/auto 2013-05-22 10043 1186
29 jhy/jsoup 2009-12-19 10023 2067
30 perwendel/spark 2011-05-05 9465 1571
31 google/bundletool 2018-05-04 2985 352
32 AxonFramework/AxonFramework 2011-12-02 2971 748
33 halirutan/IntelliJ-Key-Promoter-X 2017-07-28 2937 67
34 JackyAndroid/AndroidTVLauncher 2016-03-27 2932 715
35 hneemann/Digital 2016-06-28 2932 326
36 KeepSafe/ReLinker 2015-10-15 2927 356
37 apache/curator 2014-03-03 2919 1199
38 mbechler/marshalsec 2017-05-22 2915 674

The list continues on the next page

iv

https://github.com/square/retrofit
https://github.com/apache/dubbo
https://github.com/skylot/jadx
https://github.com/alibaba/nacos
https://github.com/alibaba/fastjson
https://github.com/alibaba/spring-cloud-alibaba
https://github.com/greenrobot/EventBus
https://github.com/seata/seata
https://github.com/google/gson
https://github.com/redisson/redisson
https://github.com/alibaba/Sentinel
https://github.com/termux/termux-app
https://github.com/ReactiveX/RxAndroid
https://github.com/apache/rocketmq
https://github.com/brettwooldridge/HikariCP
https://github.com/Tencent/tinker
https://github.com/LMAX-Exchange/disruptor
https://github.com/hdodenhof/CircleImageView
https://github.com/baomidou/mybatis-plus
https://github.com/alibaba/ARouter
https://github.com/mockito/mockito
https://github.com/GoogleContainerTools/jib
https://github.com/Netflix/zuul
https://github.com/Netflix/eureka
https://github.com/redis/jedis
https://github.com/code4craft/webmagic
https://github.com/square/javapoet
https://github.com/google/auto
https://github.com/jhy/jsoup
https://github.com/perwendel/spark
https://github.com/google/bundletool
https://github.com/AxonFramework/AxonFramework
https://github.com/halirutan/IntelliJ-Key-Promoter-X
https://github.com/JackyAndroid/AndroidTVLauncher
https://github.com/hneemann/Digital
https://github.com/KeepSafe/ReLinker
https://github.com/apache/curator
https://github.com/mbechler/marshalsec

Table 1 – Continuation from the previous page
No. Project Created at Stars Forks
39 microservices-patterns/ftgo-application 2017-10-23 2906 1148
40 Netflix/concurrency-limits 2017-12-11 2896 280
41 igniterealtime/Smack 2014-02-03 2322 887
42 pilgr/Paper 2015-06-11 2321 234
43 assertj/assertj 2013-03-14 2317 610
44 apache/maven-mvnd 2019-09-21 2279 170
45 sofastack/sofa-bolt 2018-04-09 2272 824
46 hierynomus/sshj 2010-02-27 2256 545
47 linkedin/rest.li 2012-11-30 2253 520
48 openzipkin/brave 2013-04-07 2253 707
49 rsocket/rsocket-java 2015-07-08 2247 343
50 google/jimfs 2013-10-21 2246 266
51 FabricMC/fabric 2018-11-04 1660 328
52 selenide/selenide 2012-02-07 1650 537
53 srikanth-lingala/zip4j 2019-05-04 1636 274
54 500px/greedo-layout-for-android 2016-02-05 1634 160
55 exchange-core/exchange-core 2018-08-05 1626 683
56 CaffeineMC/lithium-fabric 2019-11-30 1624 161
57 mc1arke/sonarqube-community-branch-plugin 2019-03-04 1615 399
58 jchambers/pushy 2013-08-02 1604 431
59 aNNiMON/Lightweight-Stream-API 2015-01-01 1602 129
60 OpenHFT/Java-Thread-Affinity 2013-09-20 1592 334
61 reactor/lite-rx-api-hands-on 2016-02-01 988 929
62 jfree/jfreechart 2016-02-01 982 390
63 hub4j/github-api 2010-04-19 982 665
64 jmrozanec/cron-utils 2014-08-08 981 246
65 java-diff-utils/java-diff-utils 2017-03-30 980 157
66 vanilla-music/vanilla 2012-09-22 980 280
67 structurizr/dsl 2020-06-13 977 234
68 mixpanel/mixpanel-android 2010-08-05 976 355
69 wstrange/GoogleAuth 2012-01-10 975 319
70 PortSwigger/param-miner 2018-07-26 972 160
71 Esri/geometry-api-java 2013-01-15 664 247
72 eclipse-californium/californium 2015-09-24 664 354
73 asr-pub/LyricViewDemo 2016-12-26 662 114
74 ppareit/swiftp 2012-02-06 662 284
75 jenkinsci/slack-plugin 2013-11-21 661 412
76 rharter/auto-value-parcel 2015-05-13 661 65
77 yacy/yacy_grid_mcp 2017-01-30 657 26
78 apache/mina-sshd 2010-05-26 657 293
79 swagger-api/swagger-parser 2014-04-21 655 483
80 xuhuisheng/sonar-l10n-zh 2012-10-03 655 216
81 ua-parser/uap-java 2014-11-09 333 161
82 ItzSomebody/radon 2018-01-11 333 78
83 SeeSharpSoft/intellij-csv-validator 2017-09-14 332 42

The list continues on the next page

v

https://github.com/microservices-patterns/ftgo-application
https://github.com/Netflix/concurrency-limits
https://github.com/igniterealtime/Smack
https://github.com/pilgr/Paper
https://github.com/assertj/assertj
https://github.com/apache/maven-mvnd
https://github.com/sofastack/sofa-bolt
https://github.com/hierynomus/sshj
https://github.com/linkedin/rest.li
https://github.com/openzipkin/brave
https://github.com/rsocket/rsocket-java
https://github.com/google/jimfs
https://github.com/FabricMC/fabric
https://github.com/selenide/selenide
https://github.com/srikanth-lingala/zip4j
https://github.com/500px/greedo-layout-for-android
https://github.com/exchange-core/exchange-core
https://github.com/CaffeineMC/lithium-fabric
https://github.com/mc1arke/sonarqube-community-branch-plugin
https://github.com/jchambers/pushy
https://github.com/aNNiMON/Lightweight-Stream-API
https://github.com/OpenHFT/Java-Thread-Affinity
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/jfree/jfreechart
https://github.com/hub4j/github-api
https://github.com/jmrozanec/cron-utils
https://github.com/java-diff-utils/java-diff-utils
https://github.com/vanilla-music/vanilla
https://github.com/structurizr/dsl
https://github.com/mixpanel/mixpanel-android
https://github.com/wstrange/GoogleAuth
https://github.com/PortSwigger/param-miner
https://github.com/Esri/geometry-api-java
https://github.com/eclipse-californium/californium
https://github.com/asr-pub/LyricViewDemo
https://github.com/ppareit/swiftp
https://github.com/jenkinsci/slack-plugin
https://github.com/rharter/auto-value-parcel
https://github.com/yacy/yacy_grid_mcp
https://github.com/apache/mina-sshd
https://github.com/swagger-api/swagger-parser
https://github.com/xuhuisheng/sonar-l10n-zh
https://github.com/ua-parser/uap-java
https://github.com/ItzSomebody/radon
https://github.com/SeeSharpSoft/intellij-csv-validator

Table 1 – Continuation from the previous page
No. Project Created at Stars Forks
84 esoco/objectrelations 2015-12-02 10 2
85 fabioz/eclipse.spellchecker 2013-10-22 10 4
86 cyNeo4j/cyNeo4j 2014-02-12 10 11
87 farnulfo/pst-exp 2015-08-26 2 4
88 indigo-dc/im-java-api 2015-10-29 2 0
89 ronnypolley/ecliseignorehelper 2015-12-08 2 0
90 imagej/imagej-troubleshooting 2015-11-18 2 3

vi

https://github.com/esoco/objectrelations
https://github.com/fabioz/eclipse.spellchecker
https://github.com/cyNeo4j/cyNeo4j
https://github.com/farnulfo/pst-exp
https://github.com/indigo-dc/im-java-api
https://github.com/ronnypolley/ecliseignorehelper
https://github.com/imagej/imagej-troubleshooting

APPENDIX B - DATABASE STRUCTURE

Figure 1: MySQL database structure of dataset and measurement results

vii

