Learning and thought processes in realistic mathematics instruction

Citation for published version (APA):

Document status and date:
Published: 01/01/1993

Document Version:
Peer reviewed version

Document license:
CC BY

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:
pure-support@ou.nl
providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 12 Jun. 2021
LEARNING AND THOUGHT PROCESSES IN REALISTIC MATHEMATICS INSTRUCTION

JO NELISSEN
The Foundation for School Counseling Service
Utrecht, The Netherlands

WELKO TOMIC
The Open University
Heerlen, The Netherlands

ABSTRACT
This article deals with the various different approaches to mathematics and the influence that these approaches have had on the teaching of this subject. In addition to the three generally known schools of mathematics instruction – the mechanistic, the structuralistic and the empirical – the article focuses on the realistic school, which has brought about far-reaching changes in mathematics instruction. Realistic mathematics is the most promising of the different schools and has also garnered the most attention internationally. Two factors have had a significant influence on the development of this school: in the first place mathematicians who came to have a different view of mathematics, and, in the second place, our knowledge about how children learn mathematics, to a large extent derived from cognitive psychology and the cultural historical school. This article concentrates on mathematics learning and instruction in primary school, using three key concepts: construction, interaction and reflection or metacognition. The article then proceeds to explore which cognitive processes are fundamental to solving mathematics problems, and, finally, discusses developments within the field of educational psychology which may be of relevance to mathematics instruction. Although the theoretical basis for construction, interaction and reflection is quite solid and there is a high level of agreement on the three concepts, more research is needed at all levels of mathematics instruction, in order to increase our understanding of these cognitive processes and the role they play in mathematics learning and instruction.

One of the most enduring ideas concerning mathematics instruction is the following: mathematics consists of a set of indisputable rules and knowledge; this knowledge has a fixed structure and can be acquired by frequent repetition and memorization.
In the past twenty-five years, far-reaching changes have taken place in mathematics instruction. More than in any other field, such changes were influenced by specialists (mathematicians) who had come to view their discipline in a different light. Their observations went a long way towards stimulating a process of renewal in mathematics instruction. New consideration was given to such fundamental questions as: how might mathematics best be taught, how might children be encouraged to show more interest for mathematics, how do children actually learn mathematics, and what is the value of mathematics?

According to Goffree, Freudenthal and Schoemaker (1981), the subject of mathematics is itself an essential element in thinking through didactical considerations in mathematics instruction. In order to understand current trends in mathematics education, we must consider briefly the changing views on this subject.

The philosophy of science distinguishes three theories of knowledge. Confrey (1981) calls these "absolutism, progressive absolutism and conceptual change". In absolutism, the growth of knowledge is seen as an accumulation, a cumulation of objective and empirically determined factual material. According to progressive absolutism (Popper, 1972), a new theory may correct, absorb, and even surpass an older one. The idea that the growth of knowledge is characterized by fundamental (paradigmatical) changes and not by the attempt to discover absolute truths has been defended by Lakatos (1976) among others. One theory may have greater force and present a more powerful argument than another, but there are no objective, ultimate criteria for deciding that one theory is incontrovertibly more valid than another.

Mathematics has long been considered an "absolutist" science. According to Confrey (1981), it is seen as "the epitome of certainty, immutable truths and irrefutable methods". Once gained, mathematical knowledge lasts unto eternity; it is discovered by bright scholars who never seem to disagree, and once discovered, becomes part of the existing knowledge base. The history of mathematics reveals that this theory is in fact misguided. Mathematicians are embroiled in constant debate and continually oppose one another's ideas; moreover, mathematical discoveries and tenets are constantly shown to be useless or even untenable.

Leading mathematicians have now abandoned the static and absolutist theory of mathematics. As Russell himself once explained, "Mathematics is the subject in which we never know what we are talking about, nor whether what we are saying is true" (cited in Bishop, 1988). Today mathematics is more likely to be seen as a fluctuating product of human activity and not as a type of finished structure. Lakatos also rebelled against the idea of mathematics as a doctrine with irrefutable rules and truths. Mathematics instruction should reveal how historical discoveries were made. It was not (and indeed is still not) the case that the practice of mathematics consists of detecting an existing system, but rather of creating and discovering new ones.

This evolving theory of mathematics also led to new ideas concerning mathematics instruction. If the essence of mathematics were irrefutable knowledge and ready-made procedures, then the primary goal of education would naturally be that children mastered this knowledge and these procedures as thoroughly as possible. In this view, the practice of mathematics consists merely of carefully and correctly applying the acquired knowledge.

If, however, mathematicians are seen as investigators and detectives who analyze their own and others' work critically, who formulate hypotheses, and who are human and therefore fallible, then mathematics instruction is placed in an entirely different light. Mathematics instruction - or, in the words of Bishop (1988), "mathematical enculturation" - means more than acquainting children with mathematical content, but also teach-
ing them how mathematicians work, which methods they use and how they think. For this reason, children are allowed to think for themselves and perform their own detective work, are allowed to make “errors” because they can learn by their mistakes, are allowed to develop their own approach, and learn how to defend it but also to improve it whenever necessary.

Mathematics is often seen as a school subject concerned exclusively with abstract and formal knowledge. According to this view, mathematical abstractions must be taught by making them more concrete. This view has been opposed by Freudenthal (1983) among others. In his opinion, we discover mathematics by observing the concrete phenomena all around us. That is why we should base teaching on the concrete phenomena in a world familiar to children. These phenomena require the use of certain classification techniques, such as diagrams and models (for example, the number line or the abacus). We should therefore avoid beleaguering children with formal mathematical formulas which will serve only to discourage them, but rather base instruction on “rich mathematical structures”, as Freudenthal calls them, which the child will be able to recognize from its own environment. To give an example: we should not be teaching children the concept of “volume” by teaching them the formula \((1 \times w \times h)\). Instead, children should be allowed to become familiar with the phenomenon of volume by discovering for themselves which of a set of bottle can hold the most water. In this way mathematics becomes meaningful for children, something that traditional mathematics teaching did not do for them, according to the mathematician Whitney (1985).

In the 1970s, the new view of mathematics, often referred to as “mathematics as human activity”, led to the rise of a new school of mathematics instruction, usually given the designation “realistic”. As it now appears (Treffers, 1991), this school is beyond doubt the most promising, but it is not the only school in mathematics instruction; three others can be distinguished (Treffers, 1987).

We will first present three other schools. Then a general character sketch of realistic mathematics instruction will be described. The discussion will next focus on how primary school children learn mathematics, using three key concepts in psychology: construction, interaction and reflection.

Schools of Mathematics Instruction

In addition to the realistic school, the literature distinguishes three other schools: the mechanistic, the structuralist and the empirical. In the following we will describe each of these schools briefly by means of various teaching methodologies relevant to this subject area (Treffers & Goffree, 1985; Nelissen, 1987): contexts, children’s own constructions, the role of the teacher, discussion and interaction, problem-based instruction (learning to investigate) and finally, meaning.

The mechanistic school is perhaps the best known of the three schools, if only because many of our readers will have been taught mathematics according to this approach. In certain respects, the work of Bloom (1954, 1976), Gagné (1983), and Anderson (1983) shows an affinity with the mechanistic school. According to Bloom, pupils should be given step-by-step guidance in achieving closely defined objectives, while Gagné believes that children must work through an entire series of subordinate tasks before they can handle one that is more complex. The teacher should follow the learning progress of each child very closely. Anderson is a particularly strong proponent of direct feedback, which serves to minimize the number of errors made.

Glaser (1991) has pointed out that a certain similarity exists between Anderson’s ideas and Skinner’s learning theory. Indeed, the mechanistic school reflects many of the princi-
ples of the behavioristic theory of learning: the use of repetition, exercises, mnemonics, and association comes to mind. There is, by the way, absolutely no objection to the use of exercises and repetition in mathematics instruction; the opposite is sooner the case. In mechanistic instruction, however, such devices are overemphasized at the expense of more flexible modes of thinking. Mechanistic mathematics instruction does not make use of contexts to any great extent (Nelissen & Van Oers, 1990). Furthermore, those that are applied do not serve as models, but are only utilized within the framework of application. There is little room for children to make their own discoveries. The teacher plays a strong, central role and interaction is not seen as an essential element of the learning process. On the contrary, mathematics class focuses on conclusive standard procedures. Little attention is given to learning to solve problems independently.

According to the second school – the structuralist school – children become acquainted with mathematical structures, number systems and relationships at a very young age. A well-known example from the 1970s is the set theory. The program set up by Davydov (1977) were heavily influenced by structuralism as propounded by French mathematicians cooperating in the Bourbaki group and by the Russian mathematician Kolmogorov, while Bourbaki’s influence can also be detected in the work of Piaget (1976). In their publications, Resnick and Ford (1981) also show a structuralist background, although recently Resnick, Lesgold and Bill (1990) have modified this approach somewhat. A feature of structuralism is that thinking is not based on the contexts that might appeal to them, but rather on given mathematical structures. Davydov (1977), for example, attempted to teach children the concept of numbers not by focusing on “natural” counting situations which the children themselves will encounter, but rather by acquainting the children with the formal relationships between magnitude, size and number. In the structuralist school, limited use is made of context and of one’s own constructions (discoveries). By contrast, instruction and the teacher’s role are strongly emphasized. Instruction is interactive, meaning that discussion does in fact take place – between the teacher and the children and between the various different children – but such discussion is strongly geared to the mathematical models that must be learned. Within certain limits children are allowed to do their own detective work, and to a certain extent their motivation must come from discoveries obtained in this fashion.

The outstanding feature of the third school – the empirical school – is the idea that instruction should relate to a child’s experiences and interests. Instruction must be “child-oriented”, as leading educational reformers (for example Steiner, Montessori, Petersen) have argued. Empiricists attach a great deal of importance to the concept of context. More precisely stated: they believe that environmental factors form the most important impetus for cognitive development. The richer the environment – and by this we mean the physical rather than the social environment – the more experience the child can acquire on its own power. Papert (1980) has even described mathematics as (part of) a “natural landscape”. It is no surprise that proponents of this school were inspired by Piaget. In his view, cognitive development is strongly determined by internal systems of rules which are built into the child. However, because the emphasis is on children’s own contribution, on their own experiences, it is not clear how a child makes progress with these experiences. This progress is, however, required if the child is to achieve a higher, more formal level of thought. Rather than teacher instruction, the empiricists emphasize spontaneous discussions. Once again, however, there is no question of systematic exploration during such discussions. Children are encouraged to do their own research, but little attention is given to analyzing the research approach, while the problems which are to be solved are invariably exceedingly “open”. Children derive meaning from appealing contexts and their own spontaneous actions.
The fourth school – realistic mathematics – deserves a section unto itself.

Realistic Mathematics Instruction as Progressive Mathematization

Realistic mathematics not only appears to be the most promising, it has also garnered the most attention internationally. This is not only because of the new points of departure that it presents; empirical research has shown that children who are taught mathematics according to a realistic method achieve significantly better results in important categories than children instructed according to a mechanistic method. A periodic assessment of pupil achievement (Wijnstra, 1988), has revealed that “realistic” children performed significantly better in the following categories – categories, it must be added, which were the focus of extensive renewal in the method concerned: basic skills (such as mental arithmetic), certain categories of arithmetic, fractions (addition and subtraction) an measurement. Analysis revealed that the differences between the scores obtained by realistic children and those obtained by mechanistic ones grew smaller as the items grew more difficult. This probably indicates that the factor of intelligence weighs more heavily as problems become more difficult.

The new approach to learning and thought processes in children has far-reaching consequences. Mathematization is viewed as a constructive, interactive and reflective activity. To begin, the point of departure for education is not learning rules and formulas, but rather working with contexts. A context is a situation which appeals to children and which they can recognize in theory. This situation might be either fictional or real, and forces children to call upon the knowledge they have gained by experience – for example in the form of their own informal working methods – thereby making learning a meaningful activity for them.

A well-chosen context can induce an active thought process in children, as the following example shows. If we give children of, say, 11 years the following problem: \(6 : 3/4\), many of them will have a great deal of trouble finding a solution. Some will answer, for example: \(2/4, 3/24\) or \(4/1/2\), whereas others will calculate that \(6 \times 4 = 24\) and that \(24\) divided by \(3\) equals \(8\). It is true that the latter answer is correct, but when these children are questioned more closely, it turns out they understand almost nothing about the operation which they themselves have just performed. The same children are next given the following context problem (which may be accompanied by an illustration): a patio is \(6\) meters long; you want to put down new bricks, and the bricks you are going to use measure 75 centimeters in length (\(3/4\) of a meter). How many bricks will you need for the length? This problem is the same as the previous one, but it has now been presented within a context, albeit a simple one. This presentation elicits a child’s own, informal approach: “measuring out”. This approach provides insight into the problem, something which the symbolic form \((6 : 3/4)\) did not do.

This answer demonstrates that working with contexts – which, if carefully constructed, can be considered paradigmatic examples – can form the basis for subsequent abstractions and for conceptualization. That is because thinking must achieve a higher, abstract level at that level these particular contexts no longer serve a purpose. That is not to say that a process of decontextualisation occurs, but rather recontextualisation. The children continue to work with contexts, but these contexts become increasingly formal in nature; they become mathematical contexts. Their connection with the original context, however, remains clear. The process by which mathematical thinking becomes increasingly formal is called the process of progressive mathematization. Contexts, thus, have various functions. They serve as a source of concepts, they serve as models and they are an important means of motivating children.
Second, the process of mathematization is characterized by the use of models. Some examples are schemata, tables, diagrams, and visualizations. Searching for models – initially simple ones – and working with them produces the first abstractions. Children furthermore learn to apply reduction and schematization, leading to a higher level of formalization. We will demonstrate, once again this using the previous example. To begin, children are able to solve the brick problem by manipulating concrete materials. For instance, they might attempt to see how often a strip of paper measuring 3/4 of a meter fits in a 6-meter-long space. At the schematic level, they visualize the 6-meter-long patio and draw lines which mark out each 3/4 of a meter or 75 centimeters. The child adds 75 + 75 + 75 … until the 6 meters have been “filled”. An example of reasoning on a formal-symbolic level is as follows: 75 centimeters fits into 3 meters 4 times. We have 6 meters, so we need 2 x 4 = 8 bricks. The formula initially tested can also be applied, but this time with insight: 1/4 meter fits 4 times into 1 meter, so it fits 24 times into 6 meters. But I only have 3/4 of a meter, so I have to divide 24 by 3, and that makes 8. At this formal level, moreover, the teacher can also explore the advantages and disadvantages of the two methods with the children. Treffers (1987) characterized the level at which contexts are used as “horizontal mathematization”. At this level, children seek out the mathematical tools are used). Mathematics itself now becomes a source of analysis and mathematical tools such as symbols are applied.

Third, an important element of realistic mathematics instruction is that subjects and curricula (such as fractions, measurement and proportion) are interwoven and connected, whereas in the past, the subject matter was divided – and so atomized.

Fourth, two other important characteristics of the process of mathematization are that it is brought about by both a child’s own constructive action and by the child’s reflections upon this action.

Finally, learning mathematics is not an individual, solitary activity, but rather an interactive one.

Construction

Learning mathematics is a constructive activity, an aspect which has been emphasized by many different authors (including Steffe, Cobb & Von Glazersfeld, 1988; Bishop, 1988; Piaget, 1976; Krutecky, 1976; Bruner, 1986; Resnick & Klopfier, 1989, and Glaser, 1991). Children construct internal, mental representations. These might be concrete images, schemata, procedures, working methods at the abstract-symbolic level, intuitions, contexts, schemata of solutions, or thought experiments.

Suppose we were able to tighten a rope around the equator so that it is taught and lies flat on the surface. We cut the rope and insert a meter-long piece of rope between the two cut ends. Once again we tighten the rope so that it is taught all around. The question is: how far above the ground is the rope now? The mental representations of children (and many adults) will contain various elements. To start, they will ask themselves what the circumference of the earth is: 44,000 kilometers. The rope – they can picture it before their very eyes – must therefore measure the same in length. Another meter – they reason to themselves – scarcely matters in proportion to that enormous distance. Probably the rope barely lifts off the ground. The mental representations formed by the children actually consist of concrete images which form a basis for solving the problem, conceived of as the relationship between that one meter and the entire circumference of the earth.

A mathematically trained problem-solver will construct entirely different representations. He or she will immediately dismiss any concrete facts and reduce the earth to a circle, focusing in on the relationship between the radius and the circumference. This rela-
relationship is then converted into a formula, \(2\pi R\). The representation is created by converting a concrete problem into an adequate mathematical formula. The rope lies about 16 centimeters above the surface of the earth.

Learning mathematics as a constructive activity means a child’s own discoveries are taken seriously. This does not mean their discoveries are always on the mark, but they do give the teacher a recognizable handle from which he or she can begin to teach. The teacher learns the general outlines of the representations of children (of a particular age), and can adjust his approach accordingly.

The constructivist point of departure seems to require some comment. It is naturally true that in order to construct correct internal representations, mathematical insights are required which the child may not always possess. Cobb, Yackel & Wood (in press) have levelled the following criticism at the “representational view of mind” theory: “We reject the metaphor of the mind as a mirror that reflects a mathematically prestructured environment unaffected by individual and collective human activity” (p. 33). Correct, internal – not idiosyncratic – representations are constructed by confronting them with external representations which are socially and culturally determined. Children do indeed actively construct their own mathematical knowledge, but their purpose is to participate increasingly in “taken-as-shared mathematical practices”. These “practices” are played out both in the classroom as in society and science, according to Cobb et al. (in press).

If rules and procedures are prescribed prematurely and one-sidedly, blocking a child’s own representations, problem will ensue. The following recorded fragment of conversation serves as a concrete illustration. Henry, a good pupil of about nine years of age, is busy working out subtraction problems in his mathematics workbook. The book gives the following formula to complete the problems: \(94 - 52 = \ldots \ldots \ldots = \ldots \ldots

Researcher: How do you do that?
Henry: First you subtract 50, that’s 44, and then you subtract 2, making 42.
Researcher: Do you always have to do it that way?
Henry: Yes.
Researcher: Can’t you subtract 2 first?
Henry: That’s not allowed.
Researcher: But why not?
Henry: Because the book says. (He points out the following example: \(54-31=5430-1=24-1=23\)).
Researcher: What if I subtract 2 first anyway?
Henry: But that’s against the rules.
Researcher: Will the answer be different if you subtract 2 first?
Henry: Maybe.

Let us now look at an example in which children are given a chance to develop their own constructions. A group of 10-to-11-years-olds was asked how it would go about solving the following problems. There are a number of bottles on a table, and each bottle has a different shape. None of them has labels, so no one can tell just how much each bottle can hold. How would you figure out which bottle can hold the most water? The children were asked to present their ideas and talk about one another’s ideas. One child suggests weighing the bottles. No, another says, hold them under water and see how much the water rises. A third suggests dumping the contents on the floor and seeing which puddle is the biggest. This is a good example of a practical situation in which children are constructing knowledge, as Cobb et al. (in press) said: “taken-as-shared”. Note that the
authors qualify the word "shared". The children's solutions do not match precisely, but they are considered "compatible" and are therefore worth discussing.

The idea that children's own constructions form the point of departure for the teaching-learning process in mathematics instruction is one of the fundamentals of the realistic school. Confrey (1985) argues as follows: "A person's knowledge is necessarily the product of his/her own constructions or mental acts. Thus s/he can have no direct or unmediated knowledge of any objective reality." Knowledge is created by means of images or representations (Gardner 1987) and these are products of our mental actions. But if their own constructions are so very important, children should be allowed to nurture their own constructions (whatever their quality may be). It is not necessarily that this would lead to anarchy and blocked communication during mathematics class, because constructions arise through interaction with other children and with the teacher. Bruner (1986) too asserts that constructivism is not a sort of cultural relativism or an homage to the proposition that "anything goes". Neither should constructions be understood in Piagetian terms. Piaget (1976) was concerned with individual constructions which arise from the subject's own position and which are the result of intrinsic and autonomous processes; "mathematical practices" have relatively little influence on them. Lo, Grayson, Wheatly and Smith (1990) discuss the close relationship between construction and interaction in the following fashion: "From a constructivist's perspective learning occurs when a child tries to adapt her functioning schemes to neutralize perturbations that arise through interactions with our world. Two important aspects, constructions and interactions, are important in the above statement. Although construction of knowledge is a personal act, it is by no means an isolated activity as many people's interpretations of constructivism imply. Constructivists recognize the importance of social actions as 'the most frequent source of perturbations'" (Salomon, 1989). Interactions, thus, lead to construction, because the process of interacting often causes perturbations in the normal pattern of behavior – particularly when unexpected problems arise – which the person involved will try to resolve by seeking his or her own solutions (constructions). A study conducted by Saxe (1988) investigated how young Brazilian candy sellers, who generally had little or no schooling, had learned mathematics. These children had learned to fix cost prices, to calculate skillfully in cash amounts, and to think in ratios (three pieces of candy is 500 cruzeiros, one piece is 200), but when confronted with classroom problems – for example, reading and comparing double-digit numbers – they were at a complete loss. They had created their own constructions in the process of solving problems encountered in daily social interaction. Constructions, in turn, may once again lead to interactions, in the sense that constructions are "tested" in interactions: do my ideas make sense, are they valid?

The construction of internal mental representations is one of the feature of the process of learning mathematics. This process distinguishes itself from the process of learning other school subjects to the extent that in mathematics, constructions – in the sense of internal representations which children formulate based on knowledge gained through experience – consistently show a closer correspondence with external representations than in other school subjects. Children gain experience in the use of measurements, numbers, ratios, and fractions and construct (intuitive) representations. In theory these representations form a basis upon which the teacher can build, although this is not always the case. The representations which the children construct concerning physical phenomena – also known as preconceptions, misconceptions or intuitive ideas – generally deviate so far from actual physical reality that they are useless as a basis for conceptualization. For example, children associate energy with eating a Mars Bar; in their minds, evaporation is the same as disappearing, heat means feeling nice and warm, and light is a ray which goes from the eye to an object, rather than the other way around (Van der Valk, 1989). These representations are useless in instruction, but the teacher must be familiar with them in
order to understand the problems that arise in conceptualization. This applies as well to
representation in other school subjects. For example, when studying history, children
have a great deal of trouble forming representations based on their own experience. One
child, for instance, regularly confused “Enlightenment” with “more light”.

Interaction

Realistic instruction in mathematics is not only constructive but also interactive.
Several authors have pointed out the importance of this interactive, or social, dimension
of learning. Bishop (1988) has argued to replace “impersonal learning” and “text teach-
ing” with “mathematical enculturation”, thereby emphasizing the relationship between
education and culture. Pimm (1990) uses the term “mathematical discourse”, while
Salomon (1989) speaks of “cognitive partnership”.

Interactive teaching has also been called “cooperative learning” (Slavin, 1986), “class-
room discourse” (Cazden, 1988), “mutual instruction” (Glaser, 1991) and “interactive
instruction” (Treffers & Goffree, 1985). Bruner, a proponent of “discovery learning” –
learning on one’s own – in the 1960s, revised his ideas several years ago:

> “My model of the child in those days was very much in the tradition of the solo
child mastering the world by presenting it to himself in his own terms. In the inter-
vening years I have come increasingly to recognize that most learning in most set-
tings is a communal activity, a sharing of the culture. It is this that leads me to
emphasize not only discovery and invention, but the importance of negotiation and
sharing” (Bruner, 1986, 127).”

Nowadays, this view of (cognitive) development and learning is classified as social-
constructivism, a classification which meshes with the realistic approach to mathematics
instruction. Bruner’s (1986) designation for the acquisition of knowledge is “negotiation
of meaning”. Not only words, concepts, gestures, and rituals, but also numbers, symbols,
images, visual and graphic representations, etc. have a whole range of meanings. In the
case of children, these meanings are frequently highly subjective. In response to the ques-
tion “How old are you?”, one child was heard to answer, “I’m four, but when I ride in the
bus I’m three.” Another child believes that when teachers roll the dice, they get double-
sixes more often than children do. Teaching, says Bruner, means negotiating meaning.
You say that 0 is “nothing”, but what then does 0 degrees mean on the thermometer? A
child does not believe her face has a surface. “Why not?” asks the teacher. “Because it
isn’t length times width,” the child responds. By applying the Socratic method, the
teacher was gradually able to convince the child that the concept “surface” was not exclu-
sively linked to the algorithm $1 \times w$.

Bruner’s tribute to Vygotsky is not at all surprising. According to the latter (1977) a
child’s higher psychic functions (such as language and thought) first take shape as a
social (interactive) activity and only later as an individual activity. Language first func-
tions as a means of communication; afterwards it becomes internalized and serves an
individual, self-regulatory function. One of the key concepts in Vygotsky’s theory is that
education should anticipate actual development. He refers to this connection to the “zone
of proximal development”, and it is this idea which inspired Bruner’s “negotiation of
learning”. Both are concerned with interactive instruction, which Freudenthal (1984) typi-
ifies as “anticipatory learning” and Van Parreren (1988) as “developing education”.

Realistic mathematics instruction is interactive, even though children must naturally be
given the chance to work independently. As demonstrated in studies carried out by the
Geneva psychologists Doise and Mugny (1984), however, the point is that allowing chil-
dren to experience various perspectives – in other words, showing them that there are other children with other ideas about how to solve a mathematical problem – will stimulate their thinking. Mechanistic (and individualistic) mathematics instruction excludes such experiences because children are required to comply with the procedures given in their textbook. Discussion is restricted because the essence of instruction lies in teaching irrefutable procedures. Realistic instruction, on the other hand, is based on the exchange of ideas, not only, as in the past, between teacher and pupils, but also between the pupils themselves. Currently, social interaction in the classroom is receiving much attention where an important line of research focuses on effects on small group work (Hiebert, 1992). It goes without saying that there should be a “genuine” occasion for discussion. That is why the point of departure for realistic instruction is frequently a problem in context; again, this emphasizes how tightly interwoven context and interaction are.

A simple example is the following: a teacher asks his class (6 and 7-year-olds) to think up as many ways as they can of doing the sum 5 + 6. The children are allowed to discuss this among themselves and together they came up with several methods: counting from 6 on up; adding 5 + 5 to reach 10 and then adding 1; counting the fingers on both hands and then adding 1; adding 6 and 6 and subtracting 1, etc. Teacher and pupils then discuss which method is the handiest and why. This process leads the children to reflect spontaneously on their own action: they are forced to compare their methods with those of the other children and consider which is best.

Another example: a teacher asks his class to guess how many words there are in a richly illustrated book. Because there are several possible strategies for doing this, the children begin to exchange ideas. In this situation, problem-oriented instruction leads naturally to interaction and reflection.

Reflection

Seen from a mathematical perspective, reflection means becoming conscious of one’s own actions and of the problem-solving process, and thinking about the actions one performs in this process. According to Hiebert (1992) reflection can be defined as the conscious consideration of one’s experiences, often in the interests of establishing relationships between ideas or actions. It involves thinking back on one’s experiences and taking the experiences as objects of thought. Educational and cognitive psychologists have been addressing the topic of reflection, or metacognition, since the early 1970s. In respect to terminology, “reflection” is seen most frequently in Russian research reports (Stepanov & Semenov, 1985; Zak, 1984; Davydov, Lompscher & Markova, 1982); Sacharowa, (1982), whereas the preference among American cognitive psychologists varies: some reports use “metacognition” (Kirby, 1984; Sternberg, 1985), others “reflection” (Kilpatrick, 1985), and in yet other reports the two terms are used more or less interchangeably (Lawson, 1984). Frequently, however the terms self-monitoring or self-regulation are also applied (Sacharowa, 1982; Glaser, 1991). It would be most tempting to spend a great deal of time discussing the many questions, controversies and dilemmas which have arisen in the literature concerning the concept of reflection – consider, for example, the discussion concerning the extent to which reflective skills are general or contingent on context (Perkins & Salomon, 1989). We generally do not reflect while performing a routine task, for the simple reason there is no cause to do so then. There is, however, reason for reflection whenever we are confronted with a problem for which there is no immediate solution at hand. Reflection begins when we ask ourselves how best to approach the problem: “Should I do it this way or that way?” (planning). Once we have set to work, other questions arise: “Is this working?” (self-monitoring), perhaps even “Can I do it?” (self-evaluation). Other obvious questions are “Will this succeed?” (anticipation) and, finally, “Am I
happy with this?” (evaluation). If the solution turns out to be a dead end, then we are forced to ask ourselves “Shouldn’t I try something else?” (consider switching methods). These are, in brief, the most important elements of reflection during the process of problem-solving.

Reflection plays a significant role in learning to solve mathematical problems, and indeed in human action in general. Through reflection pupils learn to analyze their own actions critically and also become less dependent on their teacher. Their thinking becomes more systematic. Reflection also allows them to investigate problem-solving methods and procedures for general applicability, and increases the flexibility of their thinking. The most important aspect, however, is that reflection builds self-confidence by allowing pupils to discover what they really think and why they think it. Without this knowledge, every result might seem – and in fact might very well be – serendipitous, an awareness that does little to build up confidence: the pupil might not be so lucky the next time around.

That reflection is closely tied to the mathematical learning process and to mathematical thinking can be deduced from the proposition, discussed above, that mathematization is a constructive activity. This activity, in turn, is permanently linked to interaction, as we have seen. We can imagine the connection between construction, interaction and reflection in the following manner: constructive thinking implies that interaction takes place concerning our own constructions (representations). We must naturally be able to test our own constructions and find out how valuable they are. By exploring – and anticipating – the ideas and criticisms expressed by others, we gain greater insight into our own ideas. Knowing what these ideas are and how we ultimately came up with them is called reflection. We internalize the dialogue which we originally conducted with others, turning it into a dialogue “with ourselves”. Reflection, thus, is nothing less than “internalized dialogue”: from primarily interindividual to intraindividual activity. Through reflection, we continue to create new constructions, each time at a higher level. In short, reflection is development.

There is a relationship between reflection and the process by which pupils solve mathematical problems. In one study, the reflective thinking and mathematical problem-solving skills of two groups of children were compared. One group had been taught mathematics according to the realistic method and the other according to the mechanistic method (Nelissen, 1987). One striking result was that the children in the first group were more flexible in their thinking than those in the second group, specifically because they were better able to switch strategies whenever necessary. They were less likely to concentrate purely on algorithmic solutions, and were able to develop strategies on the basis of their own experience. They tended to check their own approach without prompting and were aware of their own thought processes. In general, the children who were better able to solve problems were also better at reflection, and these were primarily the children in the “realistic” group. A number of factors might serve to explain this close, positive relationship: (a) The school curriculum followed by children in the experimental group was based on problem-solving within a rich context. Instead of being given fixed, standard procedures to learn, pupils in these schools were allowed to think up their own constructions. Through interaction they were encouraged to reflect on their own approach. In this way, problem-solving and reflection were stimulated in relation to each other. Note that the children were not given direct, separate training in reflection. Research has shown that the training of functions in a separate program has only a limited effect (Derry & Murphy, 1986). (b) By commenting regularly on each other’s actions, the “realistic” children were able to generate a reflective attitude which may have had a positive impact on their problem-solving skills. (c) The children in the experimental group were taught the concepts,
models and procedures they needed to solve problems and engage in reflection. To be able to reflect on a specific subject, they needed to acquire domain-specific knowledge. (d) Reflection will only provide beneficial after children have come to view the actions they are reflecting on as meaningful. The children in the "realistic" group found mathematics and problem-solving a meaningful activity. They were therefore more inclined to reflect on problem-solving than the children in the "mechanistic" group. Children in the latter group saw little reason to apply their own reality to learning mathematics, because this reality was continually supplanted by prescribed standard algorithms. A study conducted by Stepanov & Semenov (1985) revealed that in order to be able to reflect on the process of problem-solving, children must first see their own actions during this same process as meaningful. Meaning must therefore be given due attention during instruction, if children are to find reflection a meaningful activity. Reflection, in turn, is vital if mathematic mathematization process is to run smoothly.

Solving Mathematical Problems

One important objective in mathematics instruction is that children be able to apply the concepts and skills they have acquired with reasonable success. Problem-solving is considered by many to be one of the most important areas of application. That is why so many researchers are interested in whether, and if so, how children solve mathematics problems.

In the United States, the respective opponents and proponents of "declarative representations" and "procedural representations" (Gardner, 1987) have been engaged in a vehement debate since the early 1970s. Adherents of the first believe the knowledge base is the most important factor in problem-solving, while adherents of the second relate success largely to the use of procedures and strategies. In the 1980s the dispute concerned whether such knowledge or such (reflective) procedures were general or domain-specific. This controversy led to yet another split in both camps. Although the debate rages on, its resolution seems to be in sight, specifically because human thought is increasingly being characterized as modular. Learning is therefore by no means a "content blind" process; neither, according to Gardner (1987) are there such things as "general cognitive architectures", as Anderson (1983) and Piaget (1976) have suggested. Several leading authors appear to share this opinion: Schoenfeld (1989), Bransford, Sherwood, Vye and Rieser (1989), Bonner (1990), Resnick and Klopfier (1989), and Davydov (1977). All of the abovementioned researchers tend, albeit from different backgrounds, to maintain that problem-solving (in mathematics) will be most successful when based on a well-organized selection of domain-specific knowledge, but that the use of procedures which are (once again) domain-specific is also indispensable.

Problem-solving in mathematics, then, is also characterized by a specific mathematical approach, involving the use of domain-specific concepts, tools (procedures) and ways of thinking. A child who has not mastered this approach will have difficulty solving mathematical problems. A few examples follow. A classroom of six-and-seven-year-olds was given the following problem: two friends live next door to each other, one at number 3 and one at number 5. How many houses do they live in? The children answered: eight houses. Numbers mean little to these children, except that they can be added up. Assigning a meaning to numbers is an important component of a mathematical approach. Many children have difficulty solving the following type of problem: a Walkman costs $150 after the price has gone up by 20 percent. What was the original price? The answer most frequently given is: 20 percent of $150 is $30; the original price was therefore $120. This answer is, of course, incorrect. Insight into this problem can, however, be provided
by means of a diagram showing that 130 does not equal 100 per cent but 120 per cent:

\[
\begin{array}{cccccc}
1/5 & 1/5 & 1/5 & 1/5 & 1/5 & \text{to be added:} & 1/5 \\
20\% & 20\% & 20\% & 20\% & 20\% & 20\% \\
5/5 & \text{is 100\%;} & 6/5 & \text{then is 120\%. So} & 5/6 \times 150 & = 125.
\end{array}
\]

Schematization – or visualization – is an important mathematical strategy, a tool for solving problems. Other such tools are: estimating, simplifying problems, testing, changing perspectives and conducting a thought experiment. Gravemeyer (1988) has classified mathematization tools according to characteristics derived from mathematics itself. For example, structuring and generalizing belong to the category “generality”. Proofs and predictions belong to “certainty”, symbolization and formalization to “precision” and reduction and constructing algorithms to “conciseness”.

Resnick and Klopfel (1999) identify knowledge that plays an important role in problem-solving as “organizing schemata”, concepts which are “powerful” and must be actively acquired. In other words, it is rich, flexible, “generative knowledge”. This knowledge, or specialist knowledge, forms the basis upon which we can construct the first representation of a problem which we must solve. This representation is the starting point for a successful problem-solving process. Bransford et al. (1989) warn against the danger of rote knowledge or, as they put it, “inert knowledge”. Because children do not consider such formal knowledge “real” or meaningful, they will not be able to apply it or only do so blindly, particularly in mathematics. Children acquire inert knowledge in mathematics when they are forced to learn formulas such as “To divide by a fraction, multiply by its opposite” or to do plain problems involving meaningless numbers (leading to the type of problem discussed in the example above). In this connection, realistic mathematics instruction makes use of the models, schemata and concepts – called “conceptual models” by Lesh (1985) – which form the core of the mathematical approach. This approach is similar to Davydov’s (1977) idea of teaching children to work with theoretical concepts – which can be seen as concepts essential to a specific discipline – instead of concepts based on observation or empiricism. In this connection, Davydov has argued for the formation of theoretical thinking, similar in certain respects to Freudenthal’s development of mathematical thinking or attitude. In fact, the two are so similar that both have pointed out the same flaws in the empirical, inductive teaching approach. In this approach, knowledge comes into being through observation or empiricism. Here we can recognize the influence of the empiricist school, which, as we have seen, places very little emphasis on vertical mathematization – which is precisely what Freudenthal (1984) and Davydov (1977) do wish to emphasize. Mathematical or theoretical insights are required in order to be able to understand reality correctly (including learning tools such as the number line or abacus). Here, however, the similarity between Freudenthal and Davydov ends. According to Freudenthal, Davydov introduces theoretical concepts too early on in education; moreover, Freudenthal rejects the distinction made by Davydov between theoretical and empirical concepts. In Freudenthal’s view, theory is always inherent in empiricism; all action is implicitly theory bound. We see here that for both authors, “theory” plays a fundamental role in their analysis of mathematization and mathematical problem-solving; the difference is that Davydov sees theory as conscious and explicit, whereas Freudenthal sees it as intuitive and implicit.

Research into solving arithmetic or mathematics problems often focuses on initial mathematics problems and word problems. See for example Verschaffel & De Corte (1990), Ruesink and Van den Heuvel-Panhuizen (1991), and Span et al. (1989) for a
report on several studies carried out on learning and problem-solving in mathematics. In particular, the research team of Verschaffel and De Corte has made major contributions to research on problem-solving since the early 1980s. Following in the footsteps of Riley, Greeno and Heller (1983), they explored which internal representations children formed as a result of problems which they were given to solve, and which role the semantic features of these problems played in this. They also wished to discover how these representations formed the basis for actions, in particular problem-solving procedures. Their research revealed that semantic factors played a role in forming problem representations. Many children did indeed tend to take their lead from the meaning of words (some of which were printed by chance) in the text ("together" "with each other") and to base their solution procedures on these words. It was also shown that many verbal, nonpropositional, grammatical characteristics influenced the choice of procedure and not only cognitive schemata, as authors such as Riley et al. (1983) and Resnick (1983) have suggested. Finding the correct solution, these researchers believe, depends on the formation of adequate representations constructed from part-whole schemata.

There are, however, several objections which might be raised to this emphasis upon the part-whole schema. To begin, there is no relationship with a child's previous experiences, such as counting (Van Mulken, 1992). Second, this schema is based exclusively on the cardinal interpretation of numbers, whereas in truth numbers may appear in other forms: 9 is 6 + 3, but 9 is also 3 x 3 or the root of 81. Third, a child gets into trouble if he or she comes across a problem which does not contain a part-whole relationship; for example, John is five years old and his friend is six.

A more general comment on research into solving word problems (Van Mulken 1992; Verschaffel & De Corte, 1990, also make this point) is, however, that the influence exerted by semantic structural features has been given too much emphasis, at the expense of studying the influences which the nature and the size of numbers have on the choice of solution procedure. This is known as "number sensitivity". An example is: 62 - 18 = ? If we take account of the nature of the numbers in this problem, the obvious strategy is to subtract 20 first and then add 2. The problem 62 - 33 = ?, however, requires a different approach, for example: 63 - 33 = 30, 30 - 1 = 29.

In teaching children to solve word problems, one should emphasize neither mastery of procedures (such as the use of the part-whole schema) nor semantic features, but rather the structure of the problem, specifically the structure of the numbers. Proponents of realistic mathematics instruction argue for flexibility in choosing problem-solving methods or learning to choose them.

Some of the abovementioned researchers, with the exception of Ruesink and Van den Heuval-Panhuizen (1991), maintain that training in metacognitive skills – such as planning the course of a solution, setting up schemata, guessing the solution in advance – can simplify the approach taken to problems. However, in none of the studies was training conclusively shown to be successful, although progress was noted. Some researchers point out, no doubt correctly, that the weaker children lacked a certain knowledge background. It was remarkable that the children were able to master a heuristic (for example, making an estimate), but that this did not automatically lead to their choosing the required, formal operation.

As we saw in various examples, the function of contexts is to elicit knowledge which children have gained through experience and which they can use once again in forming internal problem representations. This is not, however, a hard and fast rule. Sometimes meanings which have been acquired through experience are directly, contrary to mathematical mathematical meaning of concepts (and, as we remarked earlier, in physics this is the rule rather than the exception; (Keil, 1989), Walkerdine (1988) draw attention to this
in her series of carefully conducted observations. An association with the child’s experience, she claims, means an association with contexts, and these are highly domain-specific. We cannot simply assume, therefore, that “‘transfer’ is affected simply by the insertion of mathematical relations into a ‘meaningful context’”. The author illustrates this by giving the following example: Children first learn the concept “more” in a pedagogical situation: “Just two mouthfuls more, mmm!” In mathematics, however, “more” is the opposite of “less”, and that is an entirely different concept. There are, then, two entirely different “discursive practices”; in other words, it is not always the case that children solve problems better by using knowledge based on their own experience.

Related Developments in Educational Psychology

In one of his renowned review articles, Glaser (1991) analyses new developments in the field of educational psychology. To begin, he points out the tendency to relate learning and thinking to specific domains. This approach has been defended by various authors. For example, in a series of studies, Keil (1989) shows that it is indeed plausible that concepts develop largely in specific domains. Research has also demonstrated the importance of reflection.

Experts – adults or children – develop skills in order to plan and monitor their actions and predict what the results of their efforts will be. In an educational experiment, Glancey (1986) introduced a group of pupils to the knowledge representation (including heuristic rules) of experts. On the basis of these representations, the pupils learned to formulate hypotheses, recognize errors and, in particular, to better organise their knowledge base. Glancey’s most original idea was to have the pupils observe experts and question them concerning their methods. The observation strategies and the questions were analyzed in advance, and an analysis was also done of how knowledge might be restructured during the learning process. Here interaction and reflection go hand in hand. The idea of learning as a process of continual restructuring, of increasing architectonics and deeper insight, has also been expounded by White and Frederiksen (1986). They furthermore emphasize establishing a link with the pupils’ naive, intuitive models, as in mathematics instruction.

Constructivism is also a tendency which Glaser (1991) has frequently come across in analyzing research reports. Although the emphasis in the past was on monitoring the pupils’ learning processes, nowadays the pupil has more control over his own learning environment, and many studies have attempted to gain insight into how pupils construct their learning environment in order to be able to learn something. A new image of the pupil is coming into being; they are no longer “good boys and girls” who learn everything by rote, but children motivated to explore and seek explanations.

It was not only among Anglo-Saxon cognitive psychology that is undergoing significant changes; the Russian Cultural Historical School has long been concentrating on research themes related to the new developments in mathematics instruction. The main focus is on reflective thinking (Zak, 1984; Stepanov & Semenov, 1985), interaction (Davydov et al., 1982), and the development of domain-specific concepts (Davydov et al., 1982; Krutecky, 1976), while education and instruction are in essence seen as the active interrelation of symbolic systems and meanings which a culture has brought forth (Leont’ev, 1980; Van Oers, 1987). For a more thorough comparison between the concepts presented by the Russian Cultural Historical School and realistic teaching methodology, readers are referred to Van Oers (1987) and Nelissen (1987).

Conclusion

There have been radical changes in the approach to mathematics instruction in The
Netherlands in the past few years. These changes came about because mathematicians began to view their own discipline differently, leading to new research on teaching methodology. This research was supported by new developments in educational psychology. In other words, the current reform is being shaped to a large extent by the learner’s own cognitive considerations. Three concepts of educational psychology have had the greatest influence on the realistic approach to mathematics: the cognitive processes of construction, interaction and reflection.

In the past few years a number of interesting new themes relevant to mathematics instruction have received a great deal of attention. We have argued that learning is a process which rests upon children’s own constructive activity. Learning takes place in a social context. Mathematical ideas are not merely abstract; they are contained within language and concepts. Learning is a process in which the child masters its cultural heritage, by learning particular sets of symbols. If children are able to put their ideas into words, they will have a better grasp of their own way of thinking. We have also stated that when children are able to put their ideas into words, their teachers will gain greater insight into their thought processes. If their constructions prove to be unusable, the teacher can confront the children with alternative approaches, for example, through problem-oriented questioning. When children discuss their ideas with one another, they not only have to state their opinions more concisely, they also have to listen, think along with others and try to understand what the other children actually mean to say. Learning – and cognitive development – is increasingly viewed as a process in which metacognition (or reflection) fulfills a regulatory function.

Solving mathematics problems requires learning domain-specific concepts rather than general knowledge. This knowledge is well-structured and flexible, and encompasses a knowledge of both content and procedures and reflective knowledge. In mathematics, tools and modes of thinking that typify mathematics should be maintained, and used to solve problems. The overriding concern is to maintain a flexible choice of tools, and that choice requires domain-specific reflection. To be able to reflect, however, knowledge of content is once again necessary; one can only reflect on the use of tools, strategies and concepts if one knows them.

By now many of these new ideas have filtered through to the practice of teaching mathematics, in part because new programs are being developed, implemented and supervised which are based on the realistic approach, and in part because teacher training now focuses on the new realistic didactic. It is, ultimately, the teachers themselves who must put these new ideas into practice.

Although there is a high degree of consensus among researchers in mathematics instruction, particularly on initial mathematics problems and word problems, up to the present theory has preceded carefully collected empirical data. If we also agree, on the basis of research findings, that construction, interaction and reflection are essential for learning mathematics, then the practice of mathematics instruction should be altered radically. Teachers are being asked to master a new approach to instruction and to their pupils. Among other things, this means a new approach to testing, to explaining, to cooperating and discussing, to working independently, to thinking intuitively, to understanding and developing concepts, etc. Such insights and skills can be acquired only in time.

* Acknowledgments: Preparation of this article was supported by a grant from The Open University.
NOTE:
* For example, in the Netherlands children under the age of four can ride public transportation free of charge.

REFERENCES

Address for Correspondence: Dr. Welko Tomic, Social Sciences Department, The Open University, P.O. Box 2960, 6401 DL Heerlen, The Netherlands.